Pop-Refinement

Alessandro Coglio
Kestrel Institute
http://www.kestrel.edu/~coglio

July 1, 2014

Abstract

Pop-refinement is an approach to stepwise refinement, carried out inside an interactive theorem prover by constructing a monotonically decreasing sequence of predicates over deeply embedded target programs. The sequence starts with a predicate that characterizes the possible implementations, and ends with a predicate that characterizes a unique program in explicit syntactic form.

Compared to existing refinement approaches, pop-refinement enables more requirements (e.g. program-level and non-functional) to be captured in the initial specification and preserved through refinement. Security requirements expressed as hyperproperties (i.e. predicates over sets of traces) are always preserved by pop-refinement, unlike the popular notion of refinement as trace set inclusion.

After introducing the concept of pop-refinement, two simple examples in Isabelle/HOL are presented, featuring program-level requirements, non-functional requirements, and hyperproperties. General remarks about pop-refinement follow. Finally, related and future work are discussed.

Contents

1 Definition 3
2 First Example 4
2.1 Target Programming Language 4
2.1.1 Syntax 4
2.1.2 Static Semantics 5
2.1.3 Dynamic Semantics 5
2.1.4 Performance 7
2.2 Requirement Specification 7
2.3 Stepwise Refinement 8
2.3.1 Step 1 8
2.3.2 Step 2 9
2.3.3 Step 3 10
2.3.4 Step 4 10
2.3.5 Step 5 11
2.3.6 Step 6 12
2.3.7 \quad Step 7 13
3 Second Example 15
3.1 Hyperproperties 15
3.2 Target Programming Language 16
3.2.1 Syntax 17
3.2.2 Static Semantics 17
3.2.3 Dynamic Semantics 18
3.3 Requirement Specification 23
3.3.1 Input/Output Variables 23
3.3.2 Low Processing 23
3.3.3 High Processing 24
3.3.4 All Requirements 24
3.3.5 Generalized Non-Interference 24
3.4 Stepwise Refinement 27
3.4.1 Step 1 27
3.4.2 Step 2 29
3.4.3 Step 3 33
3.4.4 Step 4 35
3.4.5 Step 5 35
3.4.6 Step 6 36
4 General Remarks 38
4.1 Program-Level Requirements 38
4.2 Non-Functional Requirements 38
4.3 Links with High-Level Requirements 39
4.4 Non-Determinism and Under-Specification 39
4.5 Specialized Formalisms 40
4.6 Strict and Non-Strict Refinement Steps 40
4.7 Final Predicate 40
4.8 Proof Coverage 41
4.9 Generality and Flexibility 42
5 Related Work 43
6 Future Work 45
6.1 Populating the Framework 45
6.2 Automated Transformations 45
6.3 Other Kinds of Design Objects 45

Chapter 1

Definition

In stepwise refinement $[4,18]$, a program is derived from a specification via a sequence of intermediate specifications.

Pop-refinement (where 'pop' stands for 'predicates over programs') is an approach to stepwise refinement, carried out inside an interactive theorem prover (e.g. Isabelle/HOL, HOL4, Coq, PVS, ACL2) as follows:

1. Formalize the syntax and semantics of (the needed subset of) the target programming language (and libraries), as a deep embedding.
2. Specify the requirements by defining a predicate over programs that characterizes the possible implementations.
3. Refine the specification stepwise by defining monotonically decreasing predicates over programs (decreasing with respect to inclusion, i.e. logical implication), according to decisions that narrow down the possible implementations.
4. Conclude the derivation with a predicate that characterizes a unique program in explicit syntactic form, from which the program text is readily obtained.

Chapter 2

First Example

Pop-refinement is illustrated via a simple derivation, in Isabelle/HOL, of a program that includes non-functional aspects.

2.1 Target Programming Language

In the target language used in this example, a program consists of a list of distinct variables (the parameters of the program) and an arithmetic expression (the body of the program). The body is built out of parameters, non-negative integer constants, addition operations, and doubling (i.e. multiplication by 2) operations. The program is executed by supplying non-negative integers to the parameters and evaluating the body to obtain a non-negative integer result.

For instance, executing the program

```
prog (a,b) {3 + 2* (a + b)}
```

with 5 and 7 supplied to a and byields 27 . The syntax and semantics of this language are formalized as follows.

2.1.1 Syntax

Variables are identified by names.
type-synonym name $=$ string
Expressions are built out of constants, variables, doubling operations, and addition operations.

```
datatype expr = Const nat | Var name | Double expr | Add expr expr
```

A program consists of a list of parameter variables and a body expression.

$$
\begin{aligned}
& \text { record prog }= \\
& \text { para }:: \text { name list } \\
& \text { body }:: \text { expr }
\end{aligned}
$$

2.1.2 Static Semantics

A context is a set of variables.
type-synonym ctxt $=$ name set
Given a context, an expression is well-formed iff all its variables are in the context.

```
fun wfe :: ctxt \(\Rightarrow\) expr \(\Rightarrow\) bool
where
    wfe \(\Gamma\) (Const c) \(\longleftrightarrow\) True
    \(w f e \Gamma(\) Var \(v) \longleftrightarrow v \in \Gamma \mid\)
    wfe \(\Gamma\) (Double e) \(\longleftrightarrow\) wfe \(\Gamma e \mid\)
    wfe \(\Gamma\left(A d d e_{1} e_{2}\right) \longleftrightarrow w f e \Gamma e_{1} \wedge w f e \Gamma e_{2}\)
```

The context of a program consists of the parameters.
definition ctxt $:: \operatorname{prog} \Rightarrow c t x t$
where $\operatorname{ctxt} p \equiv \operatorname{set}($ para $p)$
A program is well-formed iff the parameters are distinct and the body is wellformed in the context of the program.
definition $w f p::$ prog \Rightarrow bool
where $w f p p \equiv \operatorname{distinct}($ para $p) \wedge w f e(\operatorname{ctxt} p)(\operatorname{body} p)$

2.1.3 Dynamic Semantics

An environment associates values (non-negative integers) to variables.
type-synonym env $=$ name \rightharpoonup nat
An environment matches a context iff environment and context have the same variables.
definition match $::$ env \Rightarrow ctxt \Rightarrow bool where match $\mathcal{E} \Gamma \equiv \operatorname{dom} \mathcal{E}=\Gamma$

Evaluating an expression in an environment yields a value, or an error (None) if the expression contains a variable not in the environment.
definition mul-opt $::$ nat option \Rightarrow nat option \Rightarrow nat option (infixl $\otimes 70$)

- Lifting of multiplication to nat option.
where $U_{1} \otimes U_{2} \equiv$ case $\left(U_{1}, U_{2}\right)$ of $\left(\right.$ Some u_{1}, Some $\left.u_{2}\right) \Rightarrow$ Some $\left(u_{1} * u_{2}\right) \mid-\Rightarrow$ None
definition add-opt $::$ nat option \Rightarrow nat option \Rightarrow nat option (infixl \oplus 65)
- Lifting of addition to nat option.
where $U_{1} \oplus U_{2} \equiv$ case $\left(U_{1}, U_{2}\right)$ of $\left(\right.$ Some u_{1}, Some $\left.u_{2}\right) \Rightarrow$ Some $\left(u_{1}+u_{2}\right) \mid-\Rightarrow$ None
fun eval :: env \Rightarrow expr \Rightarrow nat option
where
eval $\mathcal{E}($ Const $c)=$ Some $c \mid$
eval $\mathcal{E}(\operatorname{Var} v)=\mathcal{E} v \mid$
eval $\mathcal{E}($ Double e) $=$ Some $2 \otimes$ eval $\mathcal{E} e \mid$
eval $\mathcal{E}\left(A d d e_{1} e_{2}\right)=$ eval $\mathcal{E} e_{1} \oplus$ eval $\mathcal{E} e_{2}$
Evaluating a well-formed expression never yields an error, if the environment matches the context.
lemma eval-wfe:
wfe $\Gamma e \Longrightarrow$ match $\mathcal{E} \Gamma \Longrightarrow$ eval $\mathcal{E} e \neq$ None
by (induct e, auto simp: match-def mul-opt-def add-opt-def)
The environments of a program are the ones that match the context of the program.
definition envs :: prog \Rightarrow env set
where envs $p \equiv\{\mathcal{E}$. match $\mathcal{E}($ ctxt $p)\}$
Evaluating the body of a well-formed program in an environment of the program never yields an error.
lemma eval-wfp:
wfp $p \Longrightarrow \mathcal{E} \in$ envs $p \Longrightarrow$ eval $\mathcal{E}(\operatorname{body} p) \neq$ None
by (metis envs-def eval-wfe mem-Collect-eq wfp-def)
Executing a program with values supplied to the parameters yields a nonnegative integer result, or an error (None) if the parameters are not distinct, the number of supplied values differs from the number of parameters, or the evaluation of the body yields an error.
definition supply $::$ prog \Rightarrow nat list \Rightarrow env option
where supply pus \equiv
let $v s=$ para p in
if distinct vs \wedge length us $=$ length vs
then Some (map-of (zip vs us))
else None
definition exec $::$ prog \Rightarrow nat list \Rightarrow nat option
where exec p us \equiv
case supply p us of Some $\mathcal{E} \Rightarrow$ eval \mathcal{E} (body p) | None \Rightarrow None
Executing a well-formed program with the same number of values as the number of parameters never yields an error.

```
lemma supply-wfp:
    \(w f p\) \(p\)
    length us \(=\) length \((\) para \(p) \Longrightarrow\)
    \(\exists \mathcal{E} \in\) envs \(p\). supply \(p\) us \(=\) Some \(\mathcal{E}\)
by (auto
    simp: wfp-def supply-def envs-def ctxt-def match-def split: option.split)
lemma exec-wfp:
    wfp \(p \Longrightarrow\) length us \(=\) length \((\) para \(p) \Longrightarrow\) exec \(p\) us \(\neq\) None
by (metis eval-wfp exec-def option.simps(5) supply-wfp)
```


2.1.4 Performance

As a non-functional semantic aspect, the cost (e.g. time and power) to execute a program is modeled as the number of doubling and addition operations.
fun coste $::$ expr \Rightarrow nat
where
coste $($ Const $c)=0 \mid$
coste $($ Var $v)=0 \mid$
coste $($ Double e $)=1+$ coste e \mid
coste $\left(\right.$ Add $\left.e_{1} e_{2}\right)=1+$ coste $e_{1}+$ coste e_{2}
definition costp $::$ prog \Rightarrow nat
where costp $p \equiv$ coste (body p)

2.2 Requirement Specification

The target program must:

1. Be well-formed.
2. Have exactly the two parameters " x " and " y ", in this order.
3. Produce the result $f x y$ when x and y are supplied to " $x^{\prime \prime}$ and " y ", where f is defined below.
4. Not exceed cost 3.
definition $f::$ nat \Rightarrow nat \Rightarrow nat
where $f x y \equiv 3 * x+2 * y$
```
definition spec \(_{0}::\) prog \(\Rightarrow\) bool
where spec \(_{0} p \equiv\)
    wfp \(p \wedge\)
    para \(p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right] \wedge\)
    \((\forall x y\). exec \(p[x, y]=\) Some \((f x y)) \wedge\)
    costp \(p \leq 3\)
```

f is used by spec_{0} to express a functional requirement on the execution of the program. spec $_{0}$ includes the non-functional requirement costp $p \leq 3$ and the syntactic interface requirement para $p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right]$, which are not expressed by f alone and are expressible only in terms of programs. f can be computed by a program with cost higher than 3 and with more or different parameters; it can also be computed by programs in different target languages.

2.3 Stepwise Refinement

It is not difficult to write a program that satisfies spec $_{0}$ and to prove that it does. But with more complex target languages and requirement specifications, writing a program and proving that it satisfies the requirements is notoriously difficult. Stepwise refinement decomposes the proof into manageable pieces, constructing the implementation along the way. The following sequence of refinement steps may be overkill for obtaining an implementation of $s p e c_{0}$, but illustrates concepts that should apply to more complex cases.

2.3.1 Step 1

The second conjunct in spec_{0} determines the parameters, leaving only the body to be determined. That conjunct also reduces the well-formedness of the program to the well-formedness of the body, and the execution of the program to the evaluation of the body.
abbreviation $\Gamma_{x y}::$ ctxt
where $\Gamma_{x y} \equiv\left\{{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right\}$
abbreviation $\mathcal{E}_{x y}::$ nat \Rightarrow nat \Rightarrow env
where $\mathcal{E}_{x y} x y \equiv\left[{ }^{\prime \prime} x^{\prime \prime} \mapsto x,{ }^{\prime \prime} y^{\prime \prime} \mapsto y\right]$
lemma reduce-prog-to-body:
para $p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right] \Longrightarrow$
$w f p ~ p=w f e \Gamma_{x y}(b o d y p) \wedge$
$\operatorname{exec} p[x, y]=\operatorname{eval}\left(\mathcal{E}_{x y} x y\right)(\operatorname{body} p)$
by (auto simp: wfp-def ctxt-def exec-def supply-def fun-upd-twist)

Using lemma reduce-prog-to-body, and using the definition of costp to reduce the cost of the program to the cost of the body, spec $_{0}$ is refined as follows.

```
definition spec \(_{1}::\) prog \(\Rightarrow\) bool
where spec \(_{1} p \equiv\)
    wfe \(\Gamma_{x y}(b o d y p) \wedge\)
    para \(p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right] \wedge\)
    \(\left(\forall x y . \operatorname{eval}\left(\mathcal{E}_{x y} x y\right)(\right.\) body \(p)=\) Some \(\left.(f x y)\right) \wedge\)
    coste \((\operatorname{body} p) \leq 3\)
```

lemma step-1-correct:
spec $_{1} p \Longrightarrow$ spec $_{0} p$
by (auto simp: spec $_{1}$-def spec $_{0}$-def reduce-prog-to-body costp-def)
spec $_{1}$ and spec $_{0}$ are actually equivalent, but the definition of $s p e c_{1}$ is "closer" to the implementation than the definition of spec $_{0}$: the latter states constraints on the whole program, while the former states simpler constraints on the body, given that the parameters are already determined. The proof of step-1-correct can also be used to prove the equivalence of spec_{1} and $s p e c_{0}$, but in general proving inclusion is easier than proving equivalence. Some of the following refinement steps yield non-equivalent predicates.

2.3.2 Step 2

The third conjunct in spec_{1} says that the body computes $f x y$, which depends on both x and y, and which yields an odd result for some values of x and y. Thus the body cannot be a constant, a variable, or a double, leaving a sum as the only option. Adding $\exists e_{1} e_{2}$. body $p=A d d e_{1} e_{2}$ as a conjunct to spec $_{1}$ and re-arranging the other conjuncts, moving some of them under the existential quantification so that they can be simplified in the next refinement step, spec_{1} is refined as follows.

```
definition spec \(_{2}::\) prog \(\Rightarrow\) bool
where spec \(_{2} p \equiv\)
    para \(p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right] \wedge\)
    \(\left(\exists e_{1} e_{2}\right.\).
        body \(p=A d d e_{1} e_{2} \wedge\)
        wfe \(\Gamma_{x y}(b o d y p) \wedge\)
    \(\left(\forall x y . \operatorname{eval}\left(\mathcal{E}_{x y} x y\right)(\right.\) body \(p)=\) Some \(\left.(f x y)\right) \wedge\)
    coste \((\operatorname{body} p) \leq 3)\)
```

lemma step-2-correct:
spec $_{2} p \Longrightarrow$ spec $_{1} p$
by (auto simp: spec $_{2}$-def spec $_{1}$-def)
This refinement step is guided by an analysis of the constraints in $s p e c_{1}$.

2.3.3 Step 3

The fact that the body is a sum reduces the well-formedness, evaluation, and cost of the body to the well-formedness, evaluation, and cost of the addends.

```
lemma reduce-body-to-addends:
    body \(p=A d d e_{1} e_{2} \Longrightarrow\)
    wfe \(\Gamma_{x y}(b o d y p)=\left(w f e \Gamma_{x y} e_{1} \wedge w f e \Gamma_{x y} e_{2}\right) \wedge\)
    eval \(\left(\mathcal{E}_{x y} x y\right)(b o d y p)=\operatorname{eval}\left(\mathcal{E}_{x y} x y\right) e_{1} \oplus \operatorname{eval}\left(\mathcal{E}_{x y} x y\right) e_{2} \wedge\)
    coste \((\) body \(p)=1+\) coste \(e_{1}+\) coste \(e_{2}\)
by auto
```

Using reduce-body-to-addends and arithmetic simplification, spec_{2} is refined as follows.

```
definition spec \(_{3}::\) prog \(\Rightarrow\) bool
```

where spec $_{3} p \equiv$
para $p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right] \wedge$
($\exists e_{1} e_{2}$.
body $p=A d d e_{1} e_{2} \wedge$
$w f e \Gamma_{x y} e_{1} \wedge$
wfe $\Gamma_{x y} e_{2} \wedge$
$\left(\forall x y . \operatorname{eval}\left(\mathcal{E}_{x y} x y\right) e_{1} \oplus \operatorname{eval}\left(\mathcal{E}_{x y} x y\right) e_{2}=\operatorname{Some}(f x y)\right) \wedge$
coste $e_{1}+$ coste $e_{2} \leq$ 2)
lemma step-3-correct:
spec $_{3} p \Longrightarrow$ spec $_{2} p$
by (auto simp: spec $_{3}$-def spec $_{2}$-def)

- No need to use reduce-body-to-addends explicitly,
- as the default rules that auto uses to prove it apply here too.

This refinement step defines the top-level structure of the body, reducing the constraints on the body to simpler constraints on its components.

2.3.4 Step 4

The second-to-last conjunct in spec_{3} suggests to split $f x y$ into two addends to be computed by e_{1} and e_{2}.

The addends $3 * x$ and $2 * y$ suggested by the definition of f would lead to a blind alley, where the cost constraints could not be satisfied-the resulting spec $_{4}$ would be always false. The refinement step would be "correct" (by strict inclusion) but the refinement sequence could never reach an implementation. It would be necessary to backtrack to spec_{3} and split $f x y$ differently.

To avoid the blind alley, the definition of f is rephrased as follows.
lemma f-rephrased:

```
fxy=x+(2*x+2*y)
by (auto simp: f-def)
```

This rephrased definition of f does not use the multiplication by 3 of the original definition, which is not (directly) supported by the target language; it only uses operations supported by the language.

Using f-rephrased, spec $_{3}$ is refined as follows.

```
definition spec \(_{4}::\) prog \(\Rightarrow\) bool
where spec \(_{4} p \equiv\)
    para \(p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right] \wedge\)
    ( \(\exists e_{1} e_{2}\).
    body \(p=A d d e_{1} e_{2} \wedge\)
    wfe \(\Gamma_{x y} e_{1} \wedge\)
    \(w f e \Gamma_{x y} e_{2} \wedge\)
    \(\left(\forall x y\right.\). eval \(\left(\mathcal{E}_{x y} x y\right) e_{1}=\) Some \(\left.x\right) \wedge\)
    \(\left(\forall x y . \operatorname{eval}\left(\mathcal{E}_{x y} x y\right) e_{2}=\operatorname{Some}(2 * x+2 * y)\right) \wedge\)
    coste \(e_{1}+\) coste \(\left.e_{2} \leq 2\right)\)
lemma step-4-correct:
    spec \(_{4} p \Longrightarrow\) spec \(_{3} p\)
by (auto simp: spec \(_{4}\)-def spec \(_{3}\)-def add-opt-def \(f\)-rephrased)
```

This refinement step reduces the functional constraint on the body to simpler functional constraints on the addends. The functional constraint can be decomposed in different ways, some of which are incompatible with the non-functional cost constraint: blind alleys are avoided by taking the non-functional constraint into account.

2.3.5 Step 5

The term x in the third-to-last conjunct in spec $_{4}$ is a shallow embedding of the program expression x , whose deep embedding is the term Var " x ". Using the latter as e_{1}, the third-to-last conjunct in spec $_{4}$ is satisfied; the expression is well-formed and has cost 0 .
lemma first-addend:
$e_{1}=$ Var $^{\prime \prime} x^{\prime \prime} \Longrightarrow$
eval $\left(\mathcal{E}_{x y} x y\right) e_{1}=$ Some $x \wedge$
wfe $\Gamma_{x y} e_{1} \wedge$
coste $e_{1}=0$
by auto
Adding $e_{1}=\operatorname{Var}{ }^{\prime \prime} x^{\prime \prime}$ as a conjunct to spec $_{4}$ and simplifying, spec $_{4}$ is refined as follows.
definition spec $_{5}::$ prog \Rightarrow bool
where spec $_{5} p \equiv$

```
para \(p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right] \wedge\)
    ( \(\exists e_{2}\).
        body \(p=\) Add \(\left(\operatorname{Var}^{\prime \prime} x^{\prime \prime}\right) e_{2} \wedge\)
        wfe \(\Gamma_{x y} e_{2} \wedge\)
    \(\left(\forall x y\right.\). eval \(\left.\left(\mathcal{E}_{x y} x y\right) e_{2}=\operatorname{Some}(2 * x+2 * y)\right) \wedge\)
    coste \(e_{2} \leq 2\) )
```

lemma step-5-correct:
spec $_{5} p \Longrightarrow$ spec $_{4} p$
by (auto simp: spec $_{5}$-def spec $_{4}$-def)

- No need to use first-addend explicitly,
- as the default rules that auto uses to prove it apply here too.

This refinement step determines the first addend of the body, leaving only the second addend to be determined.

2.3.6 Step 6

The term $2 * x+2 * y$ in the second-to-last conjunct of spec_{5} is a shallow embedding of the program expression $2 * \mathrm{x}+2 * \mathrm{y}$, whose deep embedding is the term Add (Double (Var $\left.{ }^{\prime \prime} x^{\prime \prime}\right)$) (Double (Var $\left.{ }^{\prime \prime} y^{\prime \prime}\right)$). Using the latter as e_{2}, the second-to-last conjunct in spec $_{5}$ is satisfied, but the last conjunct is not. The following factorization of the shallowly embedded expression leads to a reduced cost of the corresponding deeply embedded expression.
lemma factorization:
$(2::$ nat $) * x+2 * y=2 *(x+y)$
by auto
The deeply embedded expression Double (Add (Var "' $x^{\prime \prime}$) ($\left.\operatorname{Var}{ }^{\prime \prime} y^{\prime \prime}\right)$), which corresponds to the shallowly embedded expression $2 *(x+y)$, satisfies the second-to-last conjunct of spec $_{5}$, is well-formed, and has cost 2 .
lemma second-addend:
$e_{2}=$ Double $\left(\right.$ Add $\left(\right.$ Var $\left.^{\prime \prime} x^{\prime \prime}\right)\left(\right.$ Var $\left.\left.^{\prime \prime} y^{\prime \prime}\right)\right) \Longrightarrow$
eval $\left(\mathcal{E}_{x y} x y\right) e_{2}=\operatorname{Some}(2 * x+2 * y) \wedge$
wfe $\Gamma_{x y} e_{2} \wedge$
coste $e_{2}=2$
by (auto simp: add-opt-def mul-opt-def)

- No need to use factorization explicitly,
- as the default rules that auto uses to prove it apply here too.

Adding $e_{2}=$ Double $\left(\operatorname{Add}\left(\right.\right.$ Var $\left.^{\prime \prime} x^{\prime \prime}\right)\left(\right.$ Var $\left.\left.{ }^{\prime \prime} y^{\prime \prime}\right)\right)$ as a conjunct to spec_{5} and simplifying, spec $_{5}$ is refined as follows.
definition spec $_{6}::$ prog \Rightarrow bool
where spec $_{6} p \equiv$
para $p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right] \wedge$
body $p=\operatorname{Add}\left(\operatorname{Var}^{\prime \prime} x^{\prime \prime}\right)\left(\right.$ Double $\left.\left(\operatorname{Add}\left(\operatorname{Var}^{\prime \prime} x^{\prime \prime}\right)\left(\operatorname{Var}^{\prime \prime} y^{\prime \prime}\right)\right)\right)$
lemma step-6-correct:
spec $_{6} p \Longrightarrow$ spec $_{5} p$
by (auto simp add: spec ${ }_{6}$-def spec $_{5}$-def second-addend simp del: eval.simps)
This refinement step determines the second addend of the body, leaving nothing else to be determined.

This and the previous refinement step turn semantic constraints on the program components e_{1} and e_{2} into syntactic definitions of such components.

2.3.7 \quad Step 7

spec $_{6}$, which defines the parameters and body, is refined to characterize a unique program in explicit syntactic form.

```
abbreviation \(p_{0}::\) prog
where \(p_{0} \equiv\)
    (para \(=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right]\),
    body \(=\operatorname{Add}\left(\operatorname{Var}^{\prime \prime} x^{\prime \prime}\right)\left(\right.\) Double \(\left.\left.\left(\operatorname{Add}\left(\operatorname{Var}^{\prime \prime} x^{\prime \prime}\right)\left(\operatorname{Var}^{\prime \prime} y^{\prime \prime}\right)\right)\right) \mid\right)\)
definition spec \(_{7}::\) prog \(\Rightarrow\) bool
where \(\operatorname{spec}_{7} p \equiv p=p_{0}\)
lemma step-7-correct:
    spec \(_{7} p \Longrightarrow\) spec \(_{6} p\)
by (auto simp: spec \(_{7}\)-def spec \(_{6}\)-def)
```

The program satisfies spec $_{0}$ by construction. The program witnesses the consistency of the requirements, i.e. the fact that $s p e c_{0}$ is not always false.
lemma p_{0}-sat-spec ${ }_{0}$:
spec $_{0} p_{0}$
by (metis
step-1-correct
step-2-correct
step-3-correct
step-4-correct
step-5-correct
step-6-correct
step-7-correct
spec $_{7}-$ def)
From p_{0}, the program text
$\operatorname{prog}(x, y)\{x+2 *(x+y)\}$
is easily obtained.

Chapter 3

Second Example

Pop-refinement is illustrated via a simple derivation, in Isabelle/HOL, of a nondeterministic program that satisfies a hyperproperty.

3.1 Hyperproperties

Hyperproperties are predicates over sets of traces [3]. Hyperproperties capture security policies like non-interference [5], which applies to deterministic systems, and generalized non-interference (GNI) [11], which generalizes non-interference to non-deterministic systems.

The formulation of GNI in [3], which is derived from [12], is based on:

- A notion of traces as infinite streams of abstract states.
- Functions that map each state to low and high inputs and outputs, where 'low' and 'high' have the usual security meaning (e.g. 'low' means 'unclassified' and 'high' means 'classified'). These functions are homomorphically extended to map each trace to infinite streams of low and high inputs and outputs.

The following formulation is slightly more general, because the functions that return low and high inputs and outputs operate directly on abstract traces.

GNI says that for any two traces τ_{1} and τ_{2}, there is always a trace τ_{3} with the same high inputs as τ_{1} and the same low inputs and low outputs as τ_{2}. Intuitively, this means that a low observer (i.e. one that only observes low inputs and low outputs of traces) cannot gain any information about high inputs (i.e. high inputs cannot interfere with low outputs) because observing a trace τ_{2} is indistinguishable from observing some other trace τ_{3} that has the same high inputs as an arbitrary trace τ_{1}.
locale generalized-non-interference $=$
fixes low-in :: ' $\tau \Rightarrow$ ' i - low inputs
fixes low-out :: ' $\tau \Rightarrow{ }^{\prime} o$ - low outputs
fixes high-in :: ' $\tau \Rightarrow$ ' i - high inputs
fixes high-out :: ' $\tau \Rightarrow{ }^{\prime} o$ - high outputs
definition (in generalized-non-interference) $G N I::$ ' τ set \Rightarrow bool
where GNI $\mathcal{T} \equiv$
$\forall \tau_{1} \in \mathcal{T} . \forall \tau_{2} \in \mathcal{T} . \exists \tau_{3} \in \mathcal{T}$. high-in $\tau_{3}=$ high-in $\tau_{1} \wedge$ low-in $\tau_{3}=$ low-in $\tau_{2} \wedge$ low-out $\tau_{3}=$ low-out τ_{2}

3.2 Target Programming Language

In the target language used in this example, ${ }^{1}$ a program consists of a list of distinct state variables and a body of statements. The statements modify the variables by deterministically assigning results of expressions and by nondeterministically assigning random values. Expressions are built out of nonnegative integer constants, state variables, and addition operations. Statements are combined via conditionals, whose tests compare expressions for equality, and via sequencing. Each variable stores a non-negative integer. Executing the body in a state yields a new state. Because of non-determinism, different new states are possible, i.e. executing the body in the same state may yield different new states at different times.

For instance, executing the body of the program

```
prog {
    vars {
        x
        y
    }
    body {
        if (x == y + 1) {
            x = 0;
        } else {
            x = y + 3;
        }
        randomize y;
        y = y + 2;
    }
}
```

in the state where x contains 4 and y contains 7 , yields a new state where x always contains 10 and y may contain any number in $\{2,3, \ldots\}$.

[^0]
3.2.1 Syntax

Variables are identified by names.
type-synonym name $=$ string
Expressions are built out of constants, variables, and addition operations.
datatype expr $=$ Const nat \mid Var name \mid Add expr expr
Statements are built out of deterministic assignments, non-deterministic assignments, conditionals, and sequencing.

```
datatype stmt =
    Assign name expr |
    Random name |
    IfEq expr expr stmt stmt |
    Seq stmt stmt
```

A program consists of a list of state variables and a body statement.

```
record prog =
    vars :: name list
    body :: stmt
```


3.2.2 Static Semantics

A context is a set of variables.
type-synonym ctxt $=$ name set
Given a context, an expression is well-formed iff all its variables are in the context.
fun wfe :: ctxt \Rightarrow expr \Rightarrow bool where
wfe Γ (Const c) \longleftrightarrow True \mid
$w f e \Gamma($ Var $v) \longleftrightarrow v \in \Gamma \mid$
wfe $\Gamma\left(A d d e_{1} e_{2}\right) \longleftrightarrow w f e \Gamma e_{1} \wedge w f e \Gamma e_{2}$
Given a context, a statement is well-formed iff its deterministic assignments assign well-formed expressions to variables in the context, its non-deterministic assignments operate on variables in the context, and its conditional tests compare well-formed expressions.
fun $w f s::$ ctxt \Rightarrow stmt \Rightarrow bool

where

wfs $\Gamma($ Assign $v e) \longleftrightarrow v \in \Gamma \wedge w f e \Gamma e \mid$
wfs Γ (Random $v) \longleftrightarrow v \in \Gamma \mid$
$w f s \Gamma\left(I f E q e_{1} e_{2} s_{1} s_{2}\right) \longleftrightarrow w f e \Gamma e_{1} \wedge w f e \Gamma e_{2} \wedge w f s \Gamma s_{1} \wedge w f s \Gamma s_{2} \mid$
$w f s \Gamma\left(S e q s_{1} s_{2}\right) \longleftrightarrow w f s \Gamma s_{1} \wedge w f s \Gamma s_{2}$
The context of a program consists of the state variables.
definition ctxt :: prog \Rightarrow ctxt
where $\operatorname{ctxt} p \equiv \operatorname{set}($ vars p)
A program is well-formed iff the variables are distinct and the body is wellformed in the context of the program.
definition wfp :: prog \Rightarrow bool
where wfp $p \equiv \operatorname{distinct}(\operatorname{vars} p) \wedge w f s(\operatorname{ctxt} p)(\operatorname{body} p)$

3.2.3 Dynamic Semantics

A state associates values (non-negative integers) to variables.
type-synonym state $=$ name \rightharpoonup nat
A state matches a context iff state and context have the same variables.
definition match $::$ state \Rightarrow ctxt \Rightarrow bool
where match $\sigma \Gamma \equiv \operatorname{dom} \sigma=\Gamma$
Evaluating an expression in a state yields a value, or an error (None) if the expression contains a variable not in the state.
definition add-opt $::$ nat option \Rightarrow nat option \Rightarrow nat option (infixl $\oplus 65$)

- Lifting of addition to nat option.
where $U_{1} \oplus U_{2} \equiv$ case $\left(U_{1}, U_{2}\right)$ of (Some u_{1}, Some $\left.u_{2}\right) \Rightarrow$ Some $\left(u_{1}+u_{2}\right) \mid-\Rightarrow$ None
fun eval :: state \Rightarrow expr \Rightarrow nat option
where
eval σ (Const $c)=$ Some $c \mid$
eval $\sigma($ Var $v)=\sigma v \mid$
eval $\sigma\left(\right.$ Add $\left.e_{1} e_{2}\right)=$ eval $\sigma e_{1} \oplus$ eval σe_{2}
Evaluating a well-formed expression never yields an error, if the state matches the context.
lemma eval-wfe:
wfe $\Gamma e \Longrightarrow$ match $\sigma \Gamma \Longrightarrow$ eval $\sigma e \neq$ None
by (induct e, auto simp: match-def add-opt-def)
Executing a statement in a state yields a new state, or an error (None) if the evaluation of an expression yields an error or if an assignment operates on a variable not in the state. Non-determinism is modeled via a relation between old states and results, where a result is either a new state or an error.
inductive exec $::$ stm \Rightarrow state \Rightarrow state option \Rightarrow bool

$$
(-\triangleright-\rightsquigarrow-[50,50,50] 50)
$$

where
ExecAssignNoVar:
$v \notin \operatorname{dom} \sigma \Longrightarrow$ Assign $v e \triangleright \sigma \rightsquigarrow$ None \mid
ExecAssignEvalError:
eval $\sigma e=$ None \Longrightarrow Assign ve $\triangleright \sigma \rightsquigarrow$ None \mid
ExecAssignOK:
$v \in \operatorname{dom} \sigma \Longrightarrow$
eval $\sigma e=$ Some $u \Longrightarrow$
Assign $v e \triangleright \sigma \rightsquigarrow \operatorname{Some}(\sigma(v \mapsto u)) \mid$
ExecRandomNoVar:
$v \notin \operatorname{dom} \sigma \Longrightarrow$ Random $v \triangleright \sigma \rightsquigarrow$ None \mid
ExecRandomOK:
$v \in \operatorname{dom} \sigma \Longrightarrow$ Random $v \triangleright \sigma \rightsquigarrow \operatorname{Some}(\sigma(v \mapsto u)) \mid$
ExecCondEvalError1:
eval $\sigma e_{1}=$ None \Longrightarrow IfEq $e_{1} e_{2} s_{1} s_{2} \triangleright \sigma \rightsquigarrow$ None \mid
ExecCondEvalError2:
eval $\sigma e_{2}=$ None \Longrightarrow IfEq $e_{1} e_{2} s_{1} s_{2} \triangleright \sigma \rightsquigarrow$ None \mid
ExecCondTrue:
eval $\sigma e_{1}=$ Some $u_{1} \Longrightarrow$
eval $\sigma e_{2}=$ Some $u_{2} \Longrightarrow$
$u_{1}=u_{2} \Longrightarrow$
$s_{1} \triangleright \sigma \rightsquigarrow \varrho \Longrightarrow$
IfEq $e_{1} e_{2} s_{1} s_{2} \triangleright \sigma \rightsquigarrow \varrho \mid$
ExecCondFalse:
eval $\sigma e_{1}=$ Some $u_{1} \Longrightarrow$
eval $\sigma e_{2}=$ Some $u_{2} \Longrightarrow$
$u_{1} \neq u_{2} \Longrightarrow$
$s_{2} \triangleright \sigma \rightsquigarrow \varrho \Longrightarrow$
IfEq $e_{1} e_{2} s_{1} s_{2} \triangleright \sigma \rightsquigarrow \varrho \mid$
ExecSeqError:
$s_{1} \triangleright \sigma \rightsquigarrow$ None \Longrightarrow Seq $s_{1} s_{2} \triangleright \sigma \rightsquigarrow$ None \mid
ExecSeqOK:
$s_{1} \triangleright \sigma \rightsquigarrow$ Some $\sigma^{\prime} \Longrightarrow s_{2} \triangleright \sigma^{\prime} \rightsquigarrow \varrho \Longrightarrow$ Seq $s_{1} s_{2} \triangleright \sigma \rightsquigarrow \varrho$
The execution of any statement in any state always yields a result.
lemma exec-always:
$\exists \varrho . s \triangleright \sigma \rightsquigarrow \varrho$
proof (induct s arbitrary: σ)
case Assign
show ?case
by (metis
ExecAssignEvalError ExecAssignNoVar ExecAssignOK option.exhaust)

next

case Random
show ?case

```
    by (metis ExecRandomNoVar ExecRandomOK)
next
    case \(I f E q\)
    thus ?case
    by (metis
        ExecCondEvalError1 ExecCondEvalError2 ExecCondFalse ExecCondTrue
        option.exhaust)
next
    case \(S e q\)
    thus ?case
    by (metis ExecSeqError ExecSeqOK option.exhaust)
qed
Executing a well-formed statement in a state that matches the context never yields an error and always yields states that match the context.
lemma exec-wfs-match:
    wfs \(\Gamma s \Longrightarrow\) match \(\sigma \Gamma \Longrightarrow s \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \Longrightarrow\) match \(\sigma^{\prime} \Gamma\)
proof (induct \(s\) arbitrary: \(\sigma \sigma^{\prime}\) )
    case (Assign \(v e\) )
    then obtain \(u\)
    where eval \(\sigma\) e=Some \(u\)
    and \(\sigma^{\prime}=\sigma(v \mapsto u)\)
    by (auto elim: exec.cases)
    with Assign
    show ?case
    by (metis
    domIff dom-fun-upd fun-upd-triv match-def option.distinct(1) wfs.simps(1))
next
    case (Random v)
    then obtain \(u\)
    where \(\sigma^{\prime}=\sigma(v \mapsto u)\)
    by (auto elim: exec.cases)
    with Random
    show ?case
    by (metis
        domIff dom-fun-upd fun-upd-triv match-def option.distinct(1) wfs.simps(2))
next
    case (IfEq \(e_{1} e_{2} s_{1} s_{2}\) )
    hence \(s_{1} \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \vee s_{2} \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime}\)
    by (blast elim: exec.cases)
    with IfEq
    show ?case
    by (metis wfs.simps(3))
next
    case \(\left(S e q s_{1} s_{2}\right)\)
    then obtain \(\sigma_{i}\)
```

```
    where s}\mp@subsup{s}{1}{}\triangleright\sigma\rightsquigarrow\mathrm{ Some }\mp@subsup{\sigma}{i}{
    and s}\mp@subsup{s}{2}{}\triangleright\mp@subsup{\sigma}{i}{}\rightsquigarrow\mathrm{ Some }\mp@subsup{\sigma}{}{\prime
    by (blast elim: exec.cases)
    with Seq
    show ?case
    by (metis wfs.simps(4))
qed
lemma exec-wfs-no-error:
    wfs \Gammas\Longrightarrow match \sigma\Gamma\Longrightarrow\neg(s\triangleright\sigma\rightsquigarrow None)
proof (induct s arbitrary: \sigma)
    case (Assign ve)
    hence Var:v\in dom \sigma
    by (auto simp: match-def)
    from Assign
    have eval \sigma e\not= None
    by (metis eval-wfe wfs.simps(1))
    with Var
    show ?case
    by (auto elim: exec.cases)
next
    case (Random v)
    thus ?case
    by (auto simp: match-def elim: exec.cases)
next
    case (IfEq eq1 e
    then obtain }\mp@subsup{u}{1}{}\mp@subsup{u}{2}{
    where eval \sigma e e}=\mathrm{ Some u
    and eval \sigma e e}=\mathrm{ Some u}\mp@subsup{u}{2}{
    by (metis eval-wfe not-Some-eq wfs.simps(3))
    with IfEq
    show ?case
    by (auto elim: exec.cases)
next
    case (Seq s_ s s)
    show ?case
    proof
        assume Seq s}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\triangleright\sigma\rightsquigarrowNon
        hence }\mp@subsup{s}{1}{}\triangleright\sigma\rightsquigarrowN\mathrm{ None }\vee(\exists\mp@subsup{\sigma}{}{\prime}.\mp@subsup{s}{1}{}\triangleright\sigma\rightsquigarrow\mathrm{ Some }\mp@subsup{\sigma}{}{\prime}\wedge\mp@subsup{s}{2}{}\triangleright\mp@subsup{\sigma}{}{\prime}\rightsquigarrow\mathrm{ None )
        by (auto elim: exec.cases)
        with Seq exec-wfs-match
        show False
        by (metis wfs.simps(4))
    qed
qed
```

lemma exec-wfs-always-match:

$$
\text { wfs } \Gamma s \Longrightarrow \text { match } \sigma \Gamma \Longrightarrow \exists \sigma^{\prime} . s \triangleright \sigma \rightsquigarrow \text { Some } \sigma^{\prime} \wedge \text { match } \sigma^{\prime} \Gamma
$$

by (metis exec-always exec-wfs-match exec-wfs-no-error option.exhaust)
The states of a program are the ones that match the context of the program.
definition states $::$ prog \Rightarrow state set
where states $p \equiv\{\sigma$. match $\sigma($ ctxt $p)\}$
Executing the body of a well-formed program in a state of the program always yields some state of the program, and never an error.
lemma exec-wfp-no-error:
wfp $p \Longrightarrow \sigma \in$ states $p \Longrightarrow \neg($ body $p \triangleright \sigma \rightsquigarrow$ None $)$
by (metis exec-wfs-no-error mem-Collect-eq states-def wfp-def)
lemma exec-wfp-in-states:
wfp $p \Longrightarrow \sigma \in$ states $p \Longrightarrow$ body $p \triangleright \sigma \rightsquigarrow$ Some $\sigma^{\prime} \Longrightarrow \sigma^{\prime} \in$ states p
by (metis exec-wfs-match mem-Collect-eq states-def wfp-def)
lemma exec-wfp-always-in-states:
wfp $p \Longrightarrow \sigma \in$ states $p \Longrightarrow \exists \sigma^{\prime}$. body $p \triangleright \sigma \rightsquigarrow$ Some $\sigma^{\prime} \wedge \sigma^{\prime} \in$ states p
by (metis exec-always exec-wfp-in-states exec-wfp-no-error option.exhaust)
Program execution can be described in terms of the trace formalism in [3]. Every possible (non-erroneous) execution of a program can be described by a trace of two states-initial and final. In this definition, erroneous executions do not contribute to the traces of a program; only well-formed programs are of interest, which, as proved above, never execute erroneously. Due to nondeterminism, there may be traces with the same initial state and different final states.

```
record trace =
    initial :: state
    final :: state
inductive-set traces :: prog => trace set
for p::prog
where [intro!]:
    \sigma\in states p\Longrightarrow
    body p}\triangleright\sigma\rightsquigarrow\mathrm{ Some }\mp@subsup{\sigma}{}{\prime}
    (initial = , final = 的
```

The finite traces of a program could be turned into infinite traces by infinitely stuttering the final state, obtaining the 'executions' defined in [3]. However, such infinite traces carry no additional information compared to the finite traces from which they are derived: for programs in this language, the infinite executions of [3] are modeled as finite traces of type trace.

3.3 Requirement Specification

The target program must process low and high inputs to yield low and high outputs, according to constraints that involve both non-determinism and underspecification, with no information flowing from high inputs to low outputs. ${ }^{2}$

3.3.1 Input/Output Variables

Even though the language defined in Section 3.2 has no explicit features for input and output, an external agent could write values into some variables, execute the program body, and read values from some variables. Thus, variables may be regarded as holding inputs (in the initial state) and outputs (in the final state).

In the target program, four variables are required:

- A variable "lowIn" to hold low inputs.
- A variable "lowOut" to hold low outputs.
- A variable "highIn" to hold high inputs.
- A variable "highOut" to hold high outputs.

Other variables are allowed but not required.
definition io-vars :: prog \Rightarrow bool
where io-vars $p \equiv$ ctxt $p \supseteq\left\{{ }^{\prime \prime} l o w I n ",{ }^{\prime \prime} l o w O u t^{\prime \prime},{ }^{\prime} h i g h I n ",{ }^{\prime \prime} h i g h O u t^{\prime \prime}\right\}$

3.3.2 Low Processing

If the low input is not 0 , the low output must be 1 plus the low input. That is, for every possible execution of the program where the initial state's low input is not 0 , the final state's low output must be 1 plus the low input. If there are multiple possible final states for the same initial state due to non-determinism, all of them must have the same required low output. Thus, processing of non-0 low inputs must be deterministic.

```
definition low-proc-non0 :: prog \(\Rightarrow\) bool
where low-proc-non0 \(p \equiv\)
    \(\forall \sigma \in\) states \(p . \forall \sigma^{\prime}\).
    the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \() \neq 0 \wedge\)
    body \(p \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \longrightarrow\)
    the \(\left(\sigma^{\prime \prime}\right.\) lowOut \(\left.{ }^{\prime \prime}\right)=\) the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()+1\)
```

[^1]If the low input is 0 , the low output must be a random value. That is, for every possible initial state of the program whose low input is 0 , and for every possible value, there must exist an execution of the program whose final state has that value as low output. Executions corresponding to all possible values must be possible. Thus, processing of the 0 low input must be non-deterministic.

```
definition low-proc-0 :: prog \(\Rightarrow\) bool
where low-proc-0 \(p \equiv\)
    \(\forall \sigma \in\) states \(p . \forall u\).
        the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()=0 \longrightarrow\)
        \(\left(\exists \sigma^{\prime}\right.\). body \(p \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \wedge\) the \(\left(\sigma^{\prime \prime \prime}\right.\) lowOut \(\left.\left.{ }^{\prime \prime}\right)=u\right)\)
```


3.3.3 High Processing

The high output must be at least as large as the sum of the low and high inputs. That is, for every possible execution of the program, the final state's high output must satisfy the constraint. If there are multiple possible final states for the same initial state due to non-determinism, all of them must contain a high output that satisfies the constraint. Since different high outputs may satisfy the constraint given the same inputs, not all the possible final states from a given initial state must have the same high output. Thus, processing of high inputs is under-specified; it can be realized deterministically or non-deterministically.

```
definition high-proc :: prog \(\Rightarrow\) bool
where high-proc \(p \equiv\)
    \(\forall \sigma \in\) states \(p . \forall \sigma^{\prime}\).
    body \(p \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \longrightarrow\)
    the \(\left(\sigma^{\prime}{ }^{\prime \prime}\right.\) highOut') \(\geq\) the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()+\) the \(\left(\sigma^{\prime \prime}\right.\) highIn")
```


3.3.4 All Requirements

Besides satisfying the above requirements on input/output variables, low processing, and high processing, the target program must be well-formed.
definition spec $_{0}::$ prog \Rightarrow bool
where spec $_{0} p \equiv$
wfp $p \wedge$ io-vars $p \wedge$ low-proc-non0 $p \wedge$ low-proc-0 $p \wedge$ high-proc p

3.3.5 Generalized Non-Interference

The parameters of the GNI formulation in Section 3.1 are instantiated according to the target program under consideration. In an execution of the program:

- The value of the variable "lowIn" in the initial state is the low input.
- The value of the variable "lowOut" in the final state is the low output.
- The value of the variable "highIn" in the initial state is the high input.
- The value of the variable "highOut" in the final state is the high output.

```
definition low-in :: trace \(\Rightarrow\) nat
where low-in \(\tau \equiv\) the (initial \(\tau\) 'lowIn")
definition low-out :: trace \(\Rightarrow\) nat
where low-out \(\tau \equiv\) the (final \(\tau^{\prime \prime}\) lowOut')
definition high-in :: trace \(\Rightarrow\) nat
where high-in \(\tau \equiv\) the (initial \(\tau\) 'highIn")
definition high-out :: trace \(\Rightarrow\) nat
where high-out \(\tau \equiv\) the (final \(\tau\) "highOut')
interpretation
    Target: generalized-non-interference low-in low-out high-in high-out .
```

abbreviation $G N I$:: trace set \Rightarrow bool
where $G N I \equiv$ Target.GNI

The requirements in spec $_{0}$ imply that the set of traces of the target program satisfies GNI.
lemma spec $0_{0}-G N I$:
spec $_{0} p \Longrightarrow G N I$ (traces p)
proof (auto simp: Target.GNI-def)
assume Spec: spec ${ }_{0} p$
- Consider a trace τ_{1} and its high input:
fix $\tau_{1}:$:trace
def highIn \equiv high-in τ_{1}
- Consider a trace τ_{2}, its low input and output, and its states:
fix $\tau_{2}::$ trace
def lowIn \equiv low-in τ_{2}
and lowOut \equiv low-out τ_{2}
and $\sigma_{2} \equiv$ initial τ_{2}
and $\sigma_{2}{ }^{\prime} \equiv$ final τ_{2}
assume $\tau_{2} \in$ traces p
hence Exec2: body $p \triangleright \sigma_{2} \rightsquigarrow$ Some $\sigma_{2}{ }^{\prime}$
and State2: $\sigma_{2} \in$ states p
by (auto simp: σ_{2}-def $\sigma_{2}{ }^{\prime}$-def elim: traces.cases)
- Construct the initial state of the witness trace τ_{3} :
def $\sigma_{3} \equiv \sigma_{2}\left({ }^{\prime \prime} h i g h I n " \mapsto\right.$ highIn $)$
hence LowIn3: the $\left(\sigma_{3}{ }^{\prime \prime}\right.$ lowIn" $\left.{ }^{\prime}\right)=$ lowIn
and HighIn3: the ($\left.\sigma_{3}{ }^{\prime \prime} \mathrm{highIn}^{\prime \prime}\right)=$ highIn
by (auto simp: lowIn-def low-in-def σ_{2}-def)
from Spec State2
have State3: $\sigma_{3} \in$ states p
by (auto simp: σ_{3}-def states-def match-def spec 0_{0}-def io-vars-def)

- Construct the final state of τ_{3}, and τ_{3}, by cases on lowIn:

show

```
\(\exists \tau_{3} \in\) traces \(p\).
    high-in \(\tau_{3}=\) high-in \(\tau_{1} \wedge\)
    low-in \(\tau_{3}=\) low-in \(\tau_{2} \wedge\)
    low-out \(\tau_{3}=\) low-out \(\tau_{2}\)
proof (cases lowIn)
    case 0
```

 - Use as final state the one required by low-proc-0:
 with Spec State3 LowIn3
 obtain \(\sigma_{3}{ }^{\prime}\)
 where Exec3: body \(p \triangleright \sigma_{3} \rightsquigarrow\) Some \(\sigma_{3}{ }^{\prime}\)
 and LowOut3: the (\(\sigma_{3}{ }^{\prime \prime}{ }^{\prime \prime}\) lowOut') \(=\) lowOut
 by (auto simp: spec \(0_{0}\)-def low-proc-0-def)
 - Construct \(\tau_{3}\) from its initial and final states:
 def \(\tau_{3} \equiv\left(\right.\) initial \(=\sigma_{3}\), final \(=\sigma_{3}{ }^{\prime}\))
 with Exec3 State3
 have Trace3: \(\tau_{3} \in\) traces \(p\)
 by auto
 have high-in \(\tau_{3}=\) high-in \(\tau_{1}\)
 and low-in \(\tau_{3}=\) low-in \(\tau_{2}\)
 and low-out \(\tau_{3}=\) low-out \(\tau_{2}\)
 by (auto simp:
 high-in-def low-in-def low-out-def
 \(\tau_{3}\)-def \(\sigma_{2}\)-def \(\sigma_{2}{ }^{\prime}\)-def
 highIn-def lowIn-def lowOut-def
 LowIn3 HighIn3 LowOut3)
 with Trace3
 show ?thesis
 by auto
 next
case Suc
hence Not0: lowIn $\neq 0$
by auto
- Derive τ_{2} 's low output from low-proc-non0:
with Exec2 State2 Spec
have LowOut2: lowOut $=$ lowIn +1
by (auto simp:
spec $_{0}$-def low-proc-non0-def σ_{2}-def $\sigma_{2}{ }^{\prime}$-def
low-in-def low-out-def lowIn-def lowOut-def)
- Use any final state for τ_{3} :
from Spec
have wfp p

```
    by (auto simp: spec \(_{0}-\) def)
    with State3
    obtain \(\sigma_{3}{ }^{\prime}\)
    where Exec3: body \(p \triangleright \sigma_{3} \rightsquigarrow\) Some \(\sigma_{3}{ }^{\prime}\)
    by (metis exec-always exec-wfp-no-error not-Some-eq)
    - Derive \(\tau_{3}\) 's low output from low-proc-non0:
    with State3 Spec Not0
    have LowOut3: the ( \(\sigma_{3}{ }^{\prime}{ }^{\prime \prime}\) lowOut') \()=\) lowIn +1
    by (auto simp: spec \({ }_{0}\)-def low-proc-non0-def LowIn3)
    - Construct \(\tau_{3}\) from its initial and final states:
    def \(\tau_{3} \equiv\left(\right.\) initial \(=\sigma_{3}\), final \(=\sigma_{3}{ }^{\prime}\) )
    with Exec3 State3
    have Trace3: \(\tau_{3} \in\) traces \(p\)
    by auto
    have high-in \(\tau_{3}=\) high-in \(\tau_{1}\)
    and low-in \(\tau_{3}=\) low-in \(\tau_{2}\)
    and low-out \(\tau_{3}=\) low-out \(\tau_{2}\)
    by (auto simp:
        high-in-def low-in-def low-out-def
        \(\tau_{3}\)-def \(\sigma_{3}\)-def \(\sigma_{2}-d e f\)
        LowOut2 LowOut3
        highIn-def lowOut-def[unfolded low-out-def, symmetric])
    with Trace3
    show ?thesis
    by auto
    qed
qed
```

Since GNI is implied by spec $_{0}$ and since every pop-refinement of spec $_{0}$ implies $s p e c_{0}$, GNI is preserved through every pop-refinement of $s p e c_{0}$. Pop-refinement differs from the popular notion of refinement as inclusion of sets of traces (e.g. [1]), which does not preserve GNI [3].

3.4 Stepwise Refinement

The remark at the beginning of Section 2.3 applies here as well: the following sequence of refinement steps may be overkill for obtaining an implementation of spec $_{0}$, but illustrates concepts that should apply to more complex cases.

3.4.1 Step 1

The program needs no other variables besides those prescribed by io-vars. Thus, io-vars is refined to a stronger condition that constrains the program to contain exactly those variables, in a certain order.
abbreviation vars $_{0}$:: name list
where vars $_{0} \equiv\left[{ }^{\prime \prime}\right.$ lowIn", 'lowOut", "highIn", "highOut']

- The order of the variables in the list is arbitrary.
lemma vars ${ }_{0}$-correct:
vars $p=$ vars $_{0} \Longrightarrow$ io-vars p
by (auto simp: io-vars-def ctxt-def)
The refinement of io-vars reduces the well-formedness of the program to the well-formedness of the body.
abbreviation $\Gamma_{0}::$ ctxt
where $\Gamma_{0} \equiv\left\{{ }^{\prime \prime} l o w I^{\prime \prime},{ }^{\prime \prime}\right.$ lowOut", "highIn", "highOut" $\}$
lemma reduce-wf-prog-to-body:
vars $p=$ vars $_{0} \Longrightarrow w f p p \longleftrightarrow$ wfs $\Gamma_{0}($ body $p)$
by (auto simp: wfp-def ctxt-def)
The refinement of io-vars induces a simplification of the processing constraints: since the context of the program is now defined to be Γ_{0}, the $\sigma \in$ states p conditions are replaced with match $\sigma \Gamma_{0}$ conditions.
definition low-proc-non0 $0_{1}::$ prog \Rightarrow bool
where low-proc-non0 $1_{1} p \equiv$
$\forall \sigma \sigma^{\prime}$.
match $\sigma \Gamma_{0} \wedge$
the $\left(\sigma^{\prime \prime}\right.$ lowIn') $\neq 0 \wedge$
body $p \triangleright \sigma \rightsquigarrow$ Some $\sigma^{\prime} \longrightarrow$
the $\left(\sigma^{\prime}{ }^{\prime \prime}\right.$ lowOut'" $)=$ the $\left(\sigma^{\prime \prime}\right.$ lowIn'" $)+1$
lemma low-proc-non0 1_{1}-correct:
vars $p=$ vars $_{0} \Longrightarrow$ low-proc-non0 $1_{1} p \longleftrightarrow$ low-proc-non0 p
by (auto simp: low-proc-non0 1_{1}-def low-proc-non0-def states-def ctxt-def)
definition low-proc- $0_{1}::$ prog \Rightarrow bool
where low-proc- $0_{1} \quad p \equiv$
$\forall \sigma u$.
match $\sigma \Gamma_{0} \wedge$
the $\left(\sigma^{\prime \prime}\right.$ lowIn') $)=0 \longrightarrow$
$\left(\exists \sigma^{\prime}\right.$. body $p \triangleright \sigma \rightsquigarrow$ Some $\sigma^{\prime} \wedge$ the $\left(\sigma^{\prime}{ }^{\prime \prime}\right.$ lowOut $\left.\left.{ }^{\prime \prime}\right)=u\right)$
lemma low-proc- 0_{1}-correct:
vars $p=$ vars $_{0} \Longrightarrow$ low-proc-0 $0_{1} p \longleftrightarrow$ low-proc-0 p
by (auto simp: low-proc- 0_{1}-def low-proc-0-def states-def ctxt-def)
definition high-proc $1::$ prog \Rightarrow bool
where high-proc ${ }_{1} p \equiv$
$\forall \sigma \sigma^{\prime}$.

```
match \(\sigma \Gamma_{0} \wedge\)
body \(p \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \longrightarrow\)
the \(\left(\sigma^{\prime \prime} h i g h O u t^{\prime \prime}\right) \geq\) the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()+\) the \(\left(\sigma^{\prime \prime} h i g h I n^{\prime \prime}\right)\)
```

lemma high-proc ${ }_{1}$-correct:
vars $p=$ vars $_{0} \Longrightarrow$ high-proc ${ }_{1} p \longleftrightarrow$ high-proc p
by (auto simp: high-proc 1_{1}-def high-proc-def states-def ctxt-def)
The refinement of spec_{0} consists of the refinement of io-vars and of the simplified constraints.
definition spec $_{1}::$ prog \Rightarrow bool
where spec $_{1} p \equiv$
vars $p=$ vars $_{0} \wedge$
wfs $\Gamma_{0}($ body $p) \wedge$
low-proc-non0 $1_{1} p \wedge$
low-proc- $0_{1} p \wedge$
high-proc $_{1} p$
lemma step-1-correct:
spec $_{1} p \Longrightarrow$ spec $_{0} p$
by (auto simp:
spec $_{1}-$ def spec $_{0}-$ def
vars $_{0}$-correct
reduce-wf-prog-to-body
low-proc-non0 1_{1}-correct
low-proc- 0_{1}-correct
high-proc $_{1}$-correct)

3.4.2 Step 2

The body of the target program is split into two sequential statements-one to compute the low output and one to compute the high output.
definition body-split :: prog \Rightarrow stmt \Rightarrow stmt \Rightarrow bool
where body-split $p s_{L} s_{H} \equiv$ body $p=\operatorname{Seq} s_{L} s_{H}$

- The order of the two statements in the body is arbitrary.

The splitting reduces the well-formedness of the body to the well-formedness of the two statements.
lemma reduce-wf-body-to-stmts:
body-split $p s_{L} s_{H} \Longrightarrow w f s \Gamma_{0}(\operatorname{body} p) \longleftrightarrow w f s \Gamma_{0} s_{L} \wedge w f s \Gamma_{0} s_{H}$
by (auto simp: body-split-def)
The processing predicates over programs are refined to predicates over the statements s_{L} and s_{H}. Since s_{H} follows s_{L} :

- s_{H} must not change the low output, which is computed by s_{L}.
- s_{L} must not change the low and high inputs, which are used by s_{H}.

```
definition low-proc-non0 \(0_{2}::\) stmt \(\Rightarrow\) bool
where low-proc-non0 \({ }_{2} s_{L} \equiv\)
    \(\forall \sigma \sigma^{\prime}\).
    match \(\sigma \Gamma_{0} \wedge\)
    the \(\left(\sigma^{\prime \prime}{ }^{\prime \prime}\right.\) lowIn" \() \neq 0 \wedge\)
    \(s_{L} \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \longrightarrow\)
    the \(\left(\sigma^{\prime}{ }^{\prime \prime}\right.\) lowOut \(\left.{ }^{\prime \prime}\right)=\) the \(\left(\sigma^{\prime \prime}\right.\) lowIn \(\left.{ }^{\prime}\right)+1\)
definition low-proc- \(0_{2}\) :: stmt \(\Rightarrow\) bool
where low-proc- \(0_{2} s_{L} \equiv\)
    \(\forall \sigma u\).
    match \(\sigma \Gamma_{0} \wedge\)
    the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()=0 \longrightarrow\)
    \(\left(\exists \sigma^{\prime} \cdot s_{L} \triangleright \sigma \rightsquigarrow\right.\) Some \(\sigma^{\prime} \wedge\) the \(\left(\sigma^{\prime \prime}\right.\) lowOut \(\left.\left.{ }^{\prime}\right)=u\right)\)
definition low-proc-no-input-change :: stmt \(\Rightarrow\) bool
where low-proc-no-input-change \(s_{L} \equiv\)
    \(\forall \sigma \sigma^{\prime}\).
    match \(\sigma \Gamma_{0} \wedge\)
    \(s_{L} \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \longrightarrow\)
    the \(\left(\sigma^{\prime}{ }^{\prime \prime}\right.\) lowIn" \()=\) the \(\left(\sigma^{\prime \prime}\right.\) lowIn" \() \wedge\)
    the \(\left(\sigma^{\prime}{ }^{\prime \prime} h i g h I n "\right)=\) the \(\left(\sigma^{\prime \prime} h i g h I n "\right)\)
definition high-proc \(2::\) stmt \(\Rightarrow\) bool
where high-proc \({ }_{2} s_{H} \equiv\)
    \(\forall \sigma \sigma^{\prime}\).
    match \(\sigma \Gamma_{0} \wedge\)
    \(s_{H} \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \longrightarrow\)
    the \(\left(\sigma^{\prime}{ }^{\prime \prime}\right.\) highOut \(\left.{ }^{\prime}\right) \geq\) the \(\left(\sigma^{\prime \prime}\right.\) lowIn") \()\) the ( \(\sigma^{\prime \prime}\) highIn")
definition high-proc-no-low-output-change :: stmt \(\Rightarrow\) bool
where high-proc-no-low-output-change \(s_{H} \equiv\)
    \(\forall \sigma \sigma^{\prime}\).
    match \(\sigma \Gamma_{0} \wedge\)
    \(s_{H} \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \longrightarrow\)
    the \(\left(\sigma^{\prime}{ }^{\prime \prime}\right.\) lowOut \(\left.{ }^{\prime \prime}\right)=\) the \(\left(\sigma^{\prime \prime}\right.\) lowOut \(\left.{ }^{\prime \prime}\right)\)
lemma proc \(_{2}\)-correct:
    assumes Body: body-split \(p s_{L} s_{H}\)
    assumes WfLow: wfs \(\Gamma_{0} s_{L}\)
    assumes WfHigh: wfs \(\Gamma_{0} s_{H}\)
    assumes LowNon0: low-proc-non0 \({ }_{2} s_{L}\)
```

```
    assumes Low0: low-proc- \(0_{2} s_{L}\)
    assumes LowSame: low-proc-no-input-change \(s_{L}\)
    assumes High: high-proc \(2_{2} s_{H}\)
    assumes HighSame: high-proc-no-low-output-change \(s_{H}\)
    shows low-proc-non0 \(0_{1} p \wedge\) low-proc- \(0_{1} p \wedge\) high-proc \(_{1} p\)
proof auto
    - Processing of non-0 low input:
    case goal1
    show ?case
    proof (auto simp: low-proc-non0 \(1_{1}\)-def)
        fix \(\sigma \sigma^{\prime}\)
        assume body \(p \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime}\)
        with Body
    obtain \(\sigma_{i}\)
    where ExecLow: \(s_{L} \triangleright \sigma \rightsquigarrow\) Some \(\sigma_{i}\)
    and ExecHigh: \(s_{H} \triangleright \sigma_{i} \rightsquigarrow\) Some \(\sigma^{\prime}\)
    by (auto simp: body-split-def elim: exec.cases)
    assume Non0: the ( \(\sigma^{\prime \prime}\) lowIn') \(>0\)
    assume InitMatch: match \(\sigma \Gamma_{0}\)
    with ExecLow WfLow
    have match \(\sigma_{i} \Gamma_{0}\)
    by (auto simp: exec-wfs-match)
    with Non0 InitMatch ExecLow ExecHigh HighSame LowNon0
    show the \(\left(\sigma^{\prime}{ }^{\prime \prime}\right.\) lowOut \(\left.{ }^{\prime \prime}\right)=\) Suc (the ( \(\sigma^{\prime \prime}\) lowIn' \(\left.{ }^{\prime \prime}\right)\) )
    unfolding high-proc-no-low-output-change-def low-proc-nonO \(2_{2}\)-def
    by (metis Suc-eq-plus1 gr-implies-not0)
    qed
next
    - Processing of 0 low input:
    case goal2
    show ?case
    proof (auto simp: low-proc- \(0_{1}-\) def)
    fix \(\sigma u\)
    assume InitMatch: match \(\sigma \Gamma_{0}\)
    and the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()=0\)
    with Low0
    obtain \(\sigma_{i}\)
    where ExecLow: \(s_{L} \triangleright \sigma \rightsquigarrow\) Some \(\sigma_{i}\)
    and LowOut: the ( \(\sigma_{i}{ }^{\prime \prime}\) lowOut') \()=u\)
    by (auto simp: low-proc- \(0_{2}\)-def)
    from InitMatch ExecLow WfLow
    have MidMatch: match \(\sigma_{i} \Gamma_{0}\)
    by (auto simp: exec-wfs-match)
    with WfHigh
    obtain \(\sigma^{\prime}\)
    where ExecHigh: \(s_{H} \triangleright \sigma_{i} \rightsquigarrow\) Some \(\sigma^{\prime}\)
```

```
    by (metis exec-wfs-always-match)
    with HighSame MidMatch
    have the ( }\mp@subsup{\sigma}{}{\prime\prime}\mathrm{ 'lowOut')})=\mathrm{ the ( }\mp@subsup{\sigma}{i}{\prime\prime}\mathrm{ 'lowOut')
    by (auto simp: high-proc-no-low-output-change-def)
    with ExecLow ExecHigh Body LowOut
    show \exists \sigma'. body p\triangleright\sigma\rightsquigarrow Some \sigma'^ the ( }\mp@subsup{\sigma}{}{\prime}\mp@subsup{}{}{\prime\prime}\mathrm{ lowOut')})=
    by (metis (hide-lams, no-types) ExecSeqOK body-split-def)
    qed
next
    - Processing of high input:
    case goal3
    show ?case
    proof (auto simp: high-proc}1-def
        fix }\sigma\mp@subsup{\sigma}{}{\prime
        assume body p\triangleright\sigma\rightsquigarrow Some \sigma'
        with Body
        obtain }\mp@subsup{\sigma}{i}{
    where ExecLow: s}\mp@subsup{L}{L}{}\triangleright\sigma\rightsquigarrow\mathrm{ Some }\mp@subsup{\sigma}{i}{
    and ExecHigh: }\mp@subsup{s}{H}{}\triangleright\mp@subsup{\sigma}{i}{}\rightsquigarrow\mathrm{ Some }\mp@subsup{\sigma}{}{\prime
    by (auto simp: body-split-def elim: exec.cases)
    assume InitMatch: match \sigma \Gamma 
    with ExecLow WfLow
    have match }\mp@subsup{\sigma}{i}{}\mp@subsup{\Gamma}{0}{
    by (auto simp: exec-wfs-match)
    with InitMatch ExecLow ExecHigh LowSame High
    show the ( }\mp@subsup{\sigma}{}{\prime\prime}\mathrm{ 'highOut") }\geq\mathrm{ the ( }\mp@subsup{\sigma}{}{\prime\prime}\mathrm{ lowIn') + the ( }\mp@subsup{\sigma}{}{\prime\prime}highIn'
    unfolding low-proc-no-input-change-def high-proc.c-def
    by metis
    qed
qed
```

The refined specification consists of the splitting of the body into the two sequential statements and the refined well-formedness and processing constraints.

```
definition spec \(_{2}::\) prog \(\Rightarrow\) bool
where spec \(_{2} p \equiv\)
    vars \(p=\) vars \(_{0} \wedge\)
\(\left(\exists s_{L} s_{H}\right.\).
    body-split \(p s_{L} s_{H} \wedge\)
    \(w f s \Gamma_{0} s_{L} \wedge\)
    \(w f s \Gamma_{0} s_{H} \wedge\)
    low-proc-non0 \(2_{2} s_{L} \wedge\)
    low-proc- \(0_{2} s_{L} \wedge\)
    low-proc-no-input-change \(s_{L} \wedge\)
    high-proc \(2_{2} s_{H} \wedge\)
    high-proc-no-low-output-change \(s_{H}\) )
```

lemma step-2-correct:
spec $_{2} p \Longrightarrow$ spec $_{1} p$
by (auto simp: spec $_{2}$-def spec $_{1}$-def reduce-wf-body-to-stmts proc ${ }_{2}$-correct)

3.4.3 Step 3

The processing constraints low-proc-nonO 0_{2} and low-proc- 0_{2} on s_{L} suggest the use of a conditional that randomizes "lowOut" if "lowIn" is 0 , and stores 1 plus "lowIn" into "lowOut" otherwise.

```
abbreviation \(s_{L 0}::\) stmt
where \(s_{L 0} \equiv\)
    \(I f E q\)
    (Var '"lowIn')
    (Const 0)
    (Random "lowOut")
    (Assign "lowOut" (Add (Var "lowIn") (Const 1)))
lemma \(w f s-s_{L 0}\) :
    \(w f s \Gamma_{0} s_{L 0}\)
by auto
lemma low-proc-non0-s \(s_{L 0}\) :
    low-proc-nonO \({ }_{2} s_{L 0}\)
proof (auto simp only: low-proc-non0 \(2_{2}\)-def)
    fix \(\sigma \sigma^{\prime}\)
    assume Match: match \(\sigma \Gamma_{0}\)
    assume \(s_{L 0} \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime}\)
    and the \(\left(\sigma^{\prime \prime}\right.\) lowIn") \(>0\)
    hence (Assign 'lowOut" (Add (Var 'lowIn'") (Const 1)) ) \(\triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime}\)
    by (auto elim: exec.cases)
    hence \(\sigma^{\prime}=\sigma\left({ }^{\prime \prime}\right.\) lowOut'" \(\mapsto\) the \(\left(\right.\) eval \(\sigma\left(\right.\) Add \(\left(\right.\) Var \(^{\prime \prime}{ }^{\prime \prime}\) lowIn') \(\left.{ }^{\prime}\right)(\) Const 1\(\left.\left.\left.)\right)\right)\right)\)
    by (auto elim: exec.cases)
    with Match
    show the \(\left(\sigma^{\prime \prime}\right.\) lowOut') \()=\) the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()+1\)
    by (auto simp: match-def add-opt-def split: option.split)
qed
lemma low-proc-0-s \(s_{L 0}\) :
    low-proc- \(0_{2} s_{L 0}\)
proof (auto simp only: low-proc- \(0_{2}\)-def)
    fix \(\sigma u\)
    assume Match: match \(\sigma \Gamma_{0}\)
    and the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()=0\)
    hence LowIn0: \(\sigma{ }^{\prime \prime}\) lowIn" \(=\) Some 0
    by (cases \(\sigma\) "lowIn", auto simp: match-def)
```

```
    from Match
    have "lowOut" \in dom \sigma
    by (auto simp: match-def)
    then obtain }\mp@subsup{\sigma}{}{\prime
    where ExecRand: Random 'lowOut" }\triangleright\sigma\rightsquigarrow\mathrm{ Some }\mp@subsup{\sigma}{}{\prime
    and \sigma'=\sigma(''lowOut" }\mapstou
    by (auto intro: ExecRandomOK)
    hence the ( }\mp@subsup{\sigma}{}{\prime\prime\prime}\mathrm{ 'lowOut')})=
    by auto
    with ExecRand LowIn0
    show \exists \sigma'. s so \triangleright \sigma\rightsquigarrow Some \sigma'^ the ( }\mp@subsup{\sigma}{}{\prime\prime\prime}\mathrm{ 'lowOut') ) = u
    by (metis ExecCondTrue eval.simps(1) eval.simps(2))
qed
lemma low-proc-no-input-change-s so:
    low-proc-no-input-change s}\mp@subsup{s}{L0}{
proof (unfold low-proc-no-input-change-def, clarify)
    fix }\sigma\mp@subsup{\sigma}{}{\prime
    assume }\mp@subsup{s}{L0}{}\triangleright\sigma\rightsquigarrow\mathrm{ Some }\mp@subsup{\sigma}{}{\prime
    hence
        Random "lowOut" }\triangleright\sigma\rightsquigarrow\mathrm{ Some }\mp@subsup{\sigma}{}{\prime}
        Assign ''lowOut" (Add (Var ''lowIn') (Const 1))\triangleright \triangleright\rightsquigarrow Some \sigma'
    by (auto elim: exec.cases)
    thus
        the ( }\mp@subsup{\sigma}{}{\prime\prime}\mathrm{ 'lowIn') ) = the ( }\mp@subsup{\sigma}{}{\prime\prime}\mathrm{ lowIn') ^
        the ( }\mp@subsup{\sigma}{}{\prime\prime
    by (auto elim: exec.cases)
qed
```

The refined specification is obtained by simplification using the definition of s_{L}.

```
definition spec \(_{3}::\) prog \(\Rightarrow\) bool
where spec \(_{3} p \equiv\)
    vars \(p=\) vars \(_{0} \wedge\)
    ( \(\exists s_{H}\).
        body-split \(p s_{L 0} s_{H} \wedge\)
        \(w f s \Gamma_{0} s_{H} \wedge\)
        high-proc \(2_{2} s_{H} \wedge\)
        high-proc-no-low-output-change \(s_{H}\) )
lemma step-3-correct:
    spec \(_{3} p \Longrightarrow\) spec \(_{2} p\)
unfolding spec \(_{3}\)-def spec \(_{2}\)-def
by (metis
    \(w f s-s_{L 0}\) low-proc-non0-s \(L_{\text {L0 }}\) low-proc-0-s \(s_{L 0}\) low-proc-no-input-change- \(s_{L 0}\) )
```

The non-determinism required by low-proc-0 cannot be pop-refined away. In
particular, s_{L} cannot be defined to copy the high input to the low output when the low input is 0 , which would lead to a program that does not satisfy GNI.

3.4.4 Step 4

The processing constraint high-proc 2 on s_{H} can be satisfied in different ways. A simple way is to pick the sum of the low and high inputs: high-proc 2 is refined by replacing the inequality with an equality.

```
definition high-proc \({ }_{4}::\) stmt \(\Rightarrow\) bool
where high-proc \(4_{4} s_{H} \equiv\)
    \(\forall \sigma \sigma^{\prime}\).
    match \(\sigma \Gamma_{0} \wedge\)
    \(s_{H} \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime} \longrightarrow\)
    the \(\left(\sigma^{\prime \prime}\right.\) 'highOut') \()=\) the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()+\) the \(\left(\sigma^{\prime \prime}\right.\) highIn'" \()\)
lemma high-proc \({ }_{4}\)-correct:
    high-proc \(_{4} s_{H} \Longrightarrow\) high-proc \({ }_{2} s_{H}\)
by (auto simp: high-proc \(4_{4}\)-def high-proc \(\boldsymbol{c}_{2}\)-def)
```

The refined specification is obtained by substituting the refined processing constraint on s_{H}.
definition spec $_{4}::$ prog \Rightarrow bool
where spec $_{4} p \equiv$
vars $p=$ vars $_{0} \wedge$
$\left(\exists s_{H}\right.$.
body-split p $s_{L 0} s_{H} \wedge$
$w f s \Gamma_{0} s_{H} \wedge$
high-proc ${ }_{4} s_{H} \wedge$
high-proc-no-low-output-change s_{H})
lemma step-4-correct:
spec $_{4} p \Longrightarrow$ spec $_{3} p$
by (auto simp: spec $_{4}$-def spec $_{3}$-def high-proc ${ }_{4}$-correct)

3.4.5 Step 5

The refined processing constraint high-proc 4_{4} on s_{H} suggest the use of an assignment that stores the sum of "lowIn" and "highIn" into "highOut".
abbreviation $s_{H 0}::$ stmt
where $s_{H 0} \equiv$ Assign "highOut" (Add (Var "lowIn') (Var "highIn't) $)$
lemma $w f s-s_{H 0}$:
$w f s \Gamma_{0} s_{H 0}$
by auto

```
lemma high-proc \(4_{4}-s_{H 0}\) :
    high-proc \(4_{4} s_{H 0}\)
proof (auto simp: high-proc \({ }_{4}\)-def)
    fix \(\sigma \sigma^{\prime}\)
    assume Match: match \(\sigma \Gamma_{0}\)
    assume \(s_{H 0} \triangleright \sigma \rightsquigarrow\) Some \(\sigma^{\prime}\)
    hence
        \(\sigma^{\prime}=\sigma\left({ }^{\prime \prime} h i g h O u t^{\prime \prime} \mapsto\right.\) the \(\left(\right.\) eval \(\sigma\left(\right.\) Add \(\left(\right.\) Var \({ }^{\prime \prime}\) lowIn"' \()\left(\right.\) Var \(\left.\left.\left.\left.^{\prime \prime} h i g h I n^{\prime \prime}\right)\right)\right)\right)\)
    by (auto elim: exec.cases)
    with Match
    show the \(\left(\sigma^{\prime}{ }^{\prime \prime}\right.\) highOut \(\left.{ }^{\prime \prime}\right)=\) the \(\left(\sigma^{\prime \prime}\right.\) lowIn') \()+\) the \(\left(\sigma^{\prime \prime}\right.\) highIn")
    by (auto simp: match-def add-opt-def split: option.split)
qed
lemma high-proc-no-low-output-change-s \(\boldsymbol{s}_{H 0}\) :
    high-proc-no-low-output-change \(s_{H 0}\)
by (auto simp: high-proc-no-low-output-change-def elim: exec.cases)
```

The refined specification is obtained by simplification using the definition of s_{H}.
definition spec $_{5}::$ prog \Rightarrow bool
where spec $_{5} p \equiv$ vars $p=$ vars $_{0} \wedge$ body-split $p s_{L 0} s_{H 0}$
lemma step-5-correct:
spec $_{5} p \Longrightarrow$ spec $_{4} p$
unfolding spec $_{5}$-def spec $_{4}$-def
by (metis $_{\text {wfs- }}^{H_{0}}$ high-proc $4_{4}-s_{H 0}$ high-proc-no-low-output-change- $s_{H 0}$)

3.4.6 Step 6

spec $_{5}$, which defines the variables and the body, is refined to characterize a unique program in explicit syntactic form.
abbreviation $p_{0}::$ prog
where $p_{0} \equiv\left(\right.$ vars $=$ vars $_{0}$, body $\left.=\operatorname{Seq} s_{L 0} s_{H 0} \mid\right)$
definition spec $_{6}::$ prog \Rightarrow bool
where spec $_{6} p \equiv p=p_{0}$
lemma step-6-correct:
spec $_{6} p \Longrightarrow$ spec $_{5} p$
by (auto simp: spec $_{6}$-def spec $_{5}$-def body-split-def)
The program satisfies spec $_{0}$ by construction. The program witnesses the consistency of the requirements, i.e. the fact that spec_{0} is not always false.

```
lemma p}\mp@subsup{p}{0}{}\mathrm{ -sat-spec }\mp@subsup{}{0}{
    spec}0\mp@subsup{p}{0}{
by (metis
    step-1-correct
    step-2-correct
    step-3-correct
    step-4-correct
    step-5-correct
    step-6-correct
    spec}\mp@subsup{6}{6}{-def)
```

From p_{0}, the program text

```
prog {
        vars {
            lowIn
            lowOut
            highIn
            highOut
        }
        body {
            if (lowIn == 0) {
                randomize lowOut;
            } else {
                lowOut = lowIn + 1;
            }
            highOut = lowIn + highIn;
        }
}
```

is easily obtained.

Chapter 4

General Remarks

The following remarks apply to pop-refinement in general, beyond the examples in Chapter 2 and Chapter 3.

4.1 Program-Level Requirements

By predicating directly over programs, a pop-refinement specification (like spec $_{0}$ in Section 2.2 and Section 3.3) can express program-level requirements that are defined in terms of the vocabulary of the target language, e.g. constraints on memory footprint (important for embedded software), restrictions on calls to system libraries to avoid or limit information leaks (important for security), conformance to coding standards (important for certain certifications), and use or provision of interfaces (important for integration with existing code). Simple examples are wfp p in Section 2.2 and Section 3.3, para $p=\left[{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} y^{\prime \prime}\right]$ in Section 2.2, and iovars p in Section 3.3.

4.2 Non-Functional Requirements

Besides functional requirements, a pop-refinement specification can express nonfunctional requirements, e.g. constraints on computational complexity, timing, power consumption, etc. ${ }^{1}$ A simple example is $\operatorname{costp} p \leq 3$ in Section 2.2.

[^2]
4.3 Links with High-Level Requirements

A pop-refinement specification can explicate links between high-level requirements and target programs.

For example, $\forall x y$. exec $p[x, y]=$ Some $(f x y)$ in spec $_{0}$ in Section 2.2 links the high-level functional requirement expressed by f to the target program $p .^{2}$

As another example, a function sort :: nat list \Rightarrow nat list, defined to map each list of natural numbers to its sorted permutation, expresses a high-level functional requirement that can be realized in different ways. An option is a procedure that destructively sorts an array in place. Another option is a procedure that returns a newly created sorted linked list from a linked list passed as argument and left unmodified. A pop-refinement specification can pin down the choice, which matters to external code that uses the procedure.

As a third example, a high-level model of a video game or physical simulator could use real numbers and differential equations. A pop-refinement specification could state required bounds on how the idealized model is approximated by an implementation that uses floating point numbers and difference equations.

Different pop-refinement specifications could use the same high-level requirements to constrain programs in different target languages or in different ways, as in the sort example above. As another example, the high-level behavior of an operating system could be described by a state transition system that abstractly models internal states and system calls; the same state transition system could be used in a pop-refinement specification of a Haskell simulator that runs on a desktop, as well as in a pop-refinement specification of a C/Assembly implementation that runs on a specific hardware platform.

4.4 Non-Determinism and Under-Specification

The interaction of refinement with non-determinism and under-specification is delicate in general. The one-to-many associations of a relational specification (e.g. a state transition system where the next-state relation may associate multiple new states to each old state) could be interpreted as non-determinism (i.e. different outcomes at different times, from the same state) or under-specification (i.e. any outcome is allowed, deterministically or non-deterministically). Hyperproperties like GNI are consistent with the interpretation as non-determinism, because security depends on the ability to yield different outcomes, e.g. generating a nonce in a cryptographic protocol. The popular notion of refinement

[^3]as inclusion of sets of traces (e.g. [1]) is consistent with the interpretation as under-specification, because a refined specification is allowed to reduce the possible outcomes. Thus, hyperproperties are not always preserved by refinement as trace set inclusion [3].

As exemplified in Section 3.3, a pop-refinement specification can explicitly distinguish non-determinism and under-specification. Each pop-refinement step preserves all the hyperproperties expressed or implied by the requirement specification. ${ }^{3}$

4.5 Specialized Formalisms

Specialized formalisms (e.g. state machines, temporal logic), shallowly or deeply embedded into the logic of the theorem prover (e.g. [7, 6]), can be used to express some of the requirements of a pop-refinement specification. The logic of the theorem prover provides semantic integration of different specialized formalisms.

4.6 Strict and Non-Strict Refinement Steps

In a pop-refinement step from spec $_{i}$ to $\operatorname{spec}_{i+1}$, the two predicates may be equivalent, i.e. $\operatorname{spec}_{i+1}=\operatorname{spec}_{i}$. But the formulation of $s p e c_{i+1}$ should be "closer" to the implementation than the formulation of spec $_{i}$. An example is in Section 2.3.1.

When the implication spec $_{i+1} p \Longrightarrow \operatorname{spec}_{i} p$ is strict, potential implementations are eliminated. Since the final predicate of a pop-refinement derivation must characterize a unique program, some refinement steps must be strict-unless the initial predicate $s p e c_{0}$ is satisfiable by a unique program, which is unlikely.

A strict refinement step may lead to a blind alley where $\operatorname{spec}_{i+1}=\lambda p$. False, which cannot lead to a final predicate that characterizes a unique program. An example is discussed in Section 2.3.4.

4.7 Final Predicate

The predicate that concludes a pop-refinement derivation must have the form spec $_{n} p \equiv p=p_{0}$, where p_{0} is the representation of a program's abstract syntax

[^4]in the theorem prover, as in Section 2.3.7 and Section 3.4.6. This form guarantees that the predicate characterizes exactly one program and that the program is explicitly determined. p_{0} witnesses the consistency of the requirements, i.e. the fact that $s p e c_{0}$ is not always false; inconsistent requirements cannot lead to a predicate of this form.

A predicate of the form $\operatorname{spec}_{i} \equiv p=p_{0} \wedge \Phi p$ may not characterize a unique program: if Φp_{0} is false, spec $_{i}$ is always false. To conclude the derivation, Φ p_{0} must be proved. But it may be easier to prove the constraints expressed by Φ as p_{0} is constructed in the derivation. For example, deriving a program from $s p e c_{0}$ in Section 2.2 based on the functional constraint and ignoring the cost constraint would lead to a predicate $\operatorname{spec}_{i} \equiv p=p_{0} \wedge \operatorname{costp} p \leq 3$, where costp $p_{0} \leq 3$ must be proved to conclude the derivation; instead, the derivation in Section 2.3 proves the cost constraint as p_{0} is constructed. Taking all constraints into account at each stage of the derivation can help choose the next refinement step and reduce the chance of blind alleys (cf. Section 2.3.4).

The final predicate $s p e c_{n}$ expresses a purely syntactic requirement, while the initial predicate spec $_{0}$ usually includes semantic requirements. A pop-refinement derivation progressively turns semantic requirements into syntactic requirements. This may involve rephrasing functional requirements to use only operations supported by the target language (e.g. lemma f-rephrased in Section 2.3.4), obtaining shallowly embedded program fragments, and turning them into their deeply embedded counterparts (e.g. Section 2.3.5 and Section 2.3.6). ${ }^{4}$

4.8 Proof Coverage

In a chain of predicate inclusions as in Section 2.3 and Section 3.4, the proofs checked by the theorem prover encompass the range from the specified requirements to the implementation code. No separate code generator is needed to turn low-level specifications into code: pop-refinement folds code generation into the refinement sequence, providing fine-grained control on the implementation code.

A purely syntactic pretty-printer is needed to turn program abstract syntax, as in Section 2.3.7 and Section 3.4.6, to concrete syntax. This pretty-printer can be eliminated by formalizing in the theorem prover the concrete syntax of the target language and its relation to the abstract syntax, and by defining the spec $_{i}$ predicates over program concrete syntax-thus, folding pretty-printing into the refinement sequence.

[^5]
4.9 Generality and Flexibility

Inclusion of predicates over programs is a general and flexible notion of refinement. More specialized notions of refinement (e.g. [8, 14]) can be used for any auxiliary types, functions, etc. out of which the spec $_{i}$ predicates may be constructed, as long as the top-level implication $\operatorname{spec}_{i+1} p \Longrightarrow$ spec $_{i} p$ holds at every step.

Chapter 5

Related Work

In existing approaches to stepwise refinement (e.g. [2, 17, 9, 15]), specifications express requirements less directly than pop-refinement: a specification implicitly characterizes its possible implementations as the set of programs that can be derived from the specification via refinement (and code generation). This is a more restrictive way to characterize a set of programs than defining a predicate over deeply embedded programs in a theorem prover's general-purpose logic (as in pop-refinement).

This restrictiveness precludes some of the abilities discussed in Chapter 4, e.g. the ability to express, and guarantee through refinement, certain program-level requirements like constraints on memory footprint. A derivation may be steered to produce a program that satisfies desired requirements not expressed by the specification, but the derivation or program must be examined in order to assess that, instead of just examining the specification and letting the theorem prover automatically check the sequence of refinement steps (as with pop-refinement). Existing refinement approaches could be extended to handle additional kinds of requirements (e.g. non-functional), but for pop-refinement no theorem prover extensions are necessary.

In existing refinement approaches, each refinement step yields a new specification that characterizes a (strict or non-strict) subset of the implementations characterized by the old specification, analogously to pop-refinement. However, the restrictiveness explained above, together with any inherent constraints imposed by the refinement relation over specifications, limits the choice of the subset, providing less fine-grained control than pop-refinement.

In existing refinement approaches, the "indirection" between a specification and its set of implementations may create a disconnect between properties of a specification and properties of its implementations. For example, along the lines discussed in Section 4.4, a relational specification may satisfy a hyperproperty but some of its implementations may not, because the refinement relation may reduce the possible behaviors. Since a pop-refinement specification directly
makes statements about the possible implementations of the requirements, this kind of disconnect is avoided.

Chapter 6

Future Work

6.1 Populating the Framework

Pop-refinement provides a framework, which must be populated with re-usable concepts, methodologies, and theorem prover libraries for full fruition. The simple examples in Chapter 2 and Chapter 3, and the discussion in Chapter 4, suggests a few initial ideas. Working out examples of increasing complexity should suggest more ideas.

6.2 Automated Transformations

A pop-refinement step from $s p e c_{i}$ can be performed manually, by writing down spec $_{i+1}$ and proving spec $_{i+1} p \Longrightarrow$ spec $_{i} p$. It is sometimes possible to generate spec $_{i+1}$ from spec $_{i}$, along with a proof of spec $_{i+1} p \Longrightarrow$ spec $_{i} p$, using automated transformation techniques like term rewriting, application of algorithmic templates, and term construction by witness finding, e.g. [16, 10]. Automated transformations may require parameters to be provided and applicability conditions to be proved, but should generally save effort and make derivations more robust against changes in requirement specifications. Extending existing theorem provers with automated transformation capabilities would be advantageous for pop-refinement.

6.3 Other Kinds of Design Objects

It has been suggested [13] that pop-refinement could be used to develop other kinds of design objects than programs, e.g. protocols, digital circuits, and hybrid systems. Perhaps pop-refinement could be used to develop engines, cars,
buildings, etc. So long as these design objects can be described by languages amenable to formalization, pop-refinement should be applicable.

Bibliography

[1] Martín Abadi and Leslie Lamport. The existence of refinement mappings. Journal of Theoretical Computer Science, 82(2):253-284, 1991.
[2] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
[3] Michael Clarkson and Fred Schneider. Hyperproperties. Journal of Computer Security, 18(6):1157-1210, 2010.
[4] Edsger W. Dijkstra. A constructive approach to the problem of program correctness. BIT, 8(3):174-186, 1968.
[5] Joseph Goguen and José Meseguer. Security policies and security models. In Proc. IEEE Symposium on Security and Privacy, pages 11-20, 1982.
[6] Gudmund Grov and Stephan Merz. A definitional encoding of TLA* in Isabelle/HOL. Archive of Formal Proofs, 2011. http://afp.sf.net/entries/ TLA.shtml, Formal proof development.
[7] Steffen Helke and Florian Kammüller. Formalizing Statecharts using hierarchical automata. Archive of Formal Proofs, 2010. http://afp.sf.net/ entries/Statecharts.shtml, Formal proof development.
[8] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271-281, 1972.
[9] Cliff Jones. Systematic Software Development using VDM. Prentice Hall, second edition, 1990.
[10] Kestrel Institute. Specware. http://www.specware.org.
[11] Daryl McCullough. Specifications for multi-level security and a hook-up property. In Proc. IEEE Symposium on Security and Privacy, pages 161166, 1987.
[12] John McLean. A general theory of composition for a class of "possibilistic" properties. IEEE Transactions on Software Engineering, 22(1):53-67, 1996.
[13] Lambert Meertens. Private communication, 2012.
[14] Robin Milner. An algebraic definition of simulation between programs. Technical Report CS-205, Stanford University, 1971.
[15] Carroll Morgan. Programming from Specifications. Prentice Hall, second edition, 1998.
[16] Douglas R. Smith. Mechanizing the development of software. In Manfred Broy, editor, Calculational System Design, Proc. Marktoberdorf Summer School. IOS Press, 1999.
[17] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition, 1992.
[18] Niklaus Wirth. Program development by stepwise refinement. Communications of the ACM, 14(4):221-227, 1971.

[^0]: ${ }^{1}$ Even though this language has many similarities with the language in Section 2.1, the two languages are defined separately to keep Chapter 2 simpler.

[^1]: ${ }^{2}$ As in Section 3.1, 'low' and 'high' have the usual security meaning, e.g. 'low' means 'unclassified' and 'high' means 'classified'.

[^2]: ${ }^{1}$ In order to express these requirements, the formalized semantics of the target language must suitably include non-functional aspects, as in the simple model in Section 2.1.4.

[^3]: ${ }^{2}$ Similarly, the functional requirements in Section 3.3 could be expressed abstractly in terms of mappings between low and high inputs and outputs (without reference to program variables and executions) and linked to program variables and executions. But Section 3.3 expresses such functional requirements directly in terms of programs to keep the example (whose focus is on hyperproperties) simpler.

[^4]: ${ }^{3}$ Besides security hyperproperties expressed in terms of non-determinism, pop-refinement can handle more explicit security randomness properties. The formalized semantics of a target language could manipulate probability distributions over values (instead of just values), with random number generation libraries that return known distributions (e.g. uniform), and with language operators that transform distributions. A pop-refinement specification could include randomness requirements on program outcomes expressed in terms of distributions, and each pop-refinement step would preserve such requirements.

[^5]: ${ }^{4}$ In Section 3.4, program fragments are introduced directly, without going through shallow embeddings.

