Pop-Refinement

Alessandro Coglio

 $Kestrel\ Institute \\ http://www.kestrel.edu/\sim coglio$

July 1, 2014

Abstract

Pop-refinement is an approach to stepwise refinement, carried out inside an interactive theorem prover by constructing a monotonically decreasing sequence of predicates over deeply embedded target programs. The sequence starts with a predicate that characterizes the possible implementations, and ends with a predicate that characterizes a unique program in explicit syntactic form.

Compared to existing refinement approaches, pop-refinement enables more requirements (e.g. program-level and non-functional) to be captured in the initial specification and preserved through refinement. Security requirements expressed as hyperproperties (i.e. predicates over sets of traces) are always preserved by pop-refinement, unlike the popular notion of refinement as trace set inclusion.

After introducing the concept of pop-refinement, two simple examples in Isabelle/HOL are presented, featuring program-level requirements, non-functional requirements, and hyperproperties. General remarks about pop-refinement follow. Finally, related and future work are discussed.

Contents

1	Def	inition	L	3			
2	Firs	st Exa	mple	4			
	2.1	Target	t Programming Language	4			
		2.1.1	Syntax	4			
		2.1.2	Static Semantics	5			
		2.1.3	Dynamic Semantics	5			
		2.1.4	Performance	7			
	2.2	Requi	rement Specification	7			
	2.3	Stepw	rise Refinement	8			
		2.3.1	Step 1	8			
		2.3.2	Step 2	9			
		2.3.3	Step 3	10			
		2.3.4	Step 4	10			
		2.3.5	Step 5	11			
		2.3.6	Step 6	12			
		2.3.7	Step 7	13			
3	Second Example 15						
	3.1		rproperties	15			
	3.2		t Programming Language	16			
	_	3.2.1	Syntax	17			
		3.2.2	Static Semantics	17			
		3.2.3	Dynamic Semantics	18			
	3.3	Requi	rement Specification	23			
		3.3.1	Input/Output Variables	23			
		3.3.2	Low Processing	23			
		3.3.3	High Processing	24			
		3.3.4	All Requirements	24			
		3.3.5	Generalized Non-Interference	24			
	3.4	Stepw	rise Refinement	27			
		3.4.1	Step 1	27			
		3.4.2	Step 2	29			
		3.4.3	Step 3	33			

		3.4.4 Step 4	35 35 36				
4	Ger 4.1 4.2 4.3 4.4	3.4.6 Step 6	38 38 38 39 39				
	4.4 4.5 4.6 4.7 4.8 4.9	Non-Determinism and Under-Specification Specialized Formalisms Strict and Non-Strict Refinement Steps Final Predicate Proof Coverage Generality and Flexibility	40 40 40 41 42				
5	Rela	lated Work 43					
6	Fut	Future Work					
	6.1	Populating the Framework	45				
	6.2	Automated Transformations	45				
	6.3	Other Kinds of Design Objects	45				

Chapter 1

Definition

In stepwise refinement [4, 18], a program is derived from a specification via a sequence of intermediate specifications.

Pop-refinement (where 'pop' stands for 'predicates over programs') is an approach to stepwise refinement, carried out inside an interactive theorem prover (e.g. Isabelle/HOL, HOL4, Coq, PVS, ACL2) as follows:

- 1. Formalize the syntax and semantics of (the needed subset of) the target programming language (and libraries), as a deep embedding.
- 2. Specify the requirements by defining a predicate over programs that characterizes the possible implementations.
- 3. Refine the specification stepwise by defining monotonically decreasing predicates over programs (decreasing with respect to inclusion, i.e. logical implication), according to decisions that narrow down the possible implementations.
- 4. Conclude the derivation with a predicate that characterizes a unique program in explicit syntactic form, from which the program text is readily obtained.

Chapter 2

First Example

Pop-refinement is illustrated via a simple derivation, in Isabelle/HOL, of a program that includes non-functional aspects.

2.1 Target Programming Language

In the target language used in this example, a program consists of a list of distinct variables (the parameters of the program) and an arithmetic expression (the body of the program). The body is built out of parameters, non-negative integer constants, addition operations, and doubling (i.e. multiplication by 2) operations. The program is executed by supplying non-negative integers to the parameters and evaluating the body to obtain a non-negative integer result.

For instance, executing the program

prog
$$(a,b) \{3 + 2 * (a + b)\}$$

with 5 and 7 supplied to a and b yields 27. The syntax and semantics of this language are formalized as follows.

2.1.1 Syntax

Variables are identified by names.

type-synonym name = string

Expressions are built out of constants, variables, doubling operations, and addition operations.

 $datatype \ expr = Const \ nat \ | \ Var \ name \ | \ Double \ expr \ | \ Add \ expr \ expr$

A program consists of a list of parameter variables and a body expression.

```
record prog =
  para :: name list
  body :: expr
```

2.1.2 Static Semantics

A context is a set of variables.

```
type-synonym ctxt = name set
```

Given a context, an expression is well-formed iff all its variables are in the context.

```
fun wfe :: ctxt \Rightarrow expr \Rightarrow bool

where

wfe \ \Gamma \ (Const \ c) \longleftrightarrow True \ |

wfe \ \Gamma \ (Var \ v) \longleftrightarrow v \in \Gamma \ |

wfe \ \Gamma \ (Double \ e) \longleftrightarrow wfe \ \Gamma \ e \ |

wfe \ \Gamma \ (Add \ e_1 \ e_2) \longleftrightarrow wfe \ \Gamma \ e_1 \wedge wfe \ \Gamma \ e_2
```

The context of a program consists of the parameters.

```
definition ctxt :: prog \Rightarrow ctxt where ctxt p \equiv set (para p)
```

A program is well-formed iff the parameters are distinct and the body is well-formed in the context of the program.

```
definition wfp :: prog \Rightarrow bool

where wfp p \equiv distinct (para p) \land wfe (ctxt p) (body p)
```

2.1.3 Dynamic Semantics

An environment associates values (non-negative integers) to variables.

```
type-synonym env = name 
ightharpoonup nat
```

An environment matches a context iff environment and context have the same variables.

```
definition match :: env \Rightarrow ctxt \Rightarrow bool where match \ \mathcal{E} \ \Gamma \equiv dom \ \mathcal{E} = \Gamma
```

Evaluating an expression in an environment yields a value, or an error (None) if the expression contains a variable not in the environment.

```
definition mul\text{-}opt :: nat \ option \Rightarrow nat \ option \Rightarrow nat \ option \ (infixl \otimes 70) — Lifting of multiplication to nat \ option.
```

```
where U_1 \otimes U_2 \equiv case\ (U_1,\ U_2)\ of\ (Some\ u_1,\ Some\ u_2) \Rightarrow Some\ (u_1*u_2)\mid -\Rightarrow None
definition add\text{-}opt::\ nat\ option \Rightarrow nat\ option \Rightarrow nat\ option\ (infixl\ \oplus\ 65)
— Lifting of addition to nat\ option.
where U_1\oplus U_2\equiv case\ (U_1,\ U_2)\ of\ (Some\ u_1,\ Some\ u_2) \Rightarrow Some\ (u_1+u_2)\mid -\Rightarrow None
fun eval::\ env\Rightarrow expr\Rightarrow nat\ option
where eval\ \mathcal{E}\ (Const\ c)=Some\ c\mid eval\ \mathcal{E}\ (Var\ v)=\mathcal{E}\ v\mid eval\ \mathcal{E}\ (Double\ e)=Some\ 2\otimes eval\ \mathcal{E}\ e\mid eval\ \mathcal{E}\ (Add\ e_1\ e_2)=eval\ \mathcal{E}\ e_1\oplus eval\ \mathcal{E}\ e_2
```

Evaluating a well-formed expression never yields an error, if the environment matches the context.

```
lemma eval-wfe:
```

```
where \Gamma e \Longrightarrow match \mathcal{E} \Gamma \Longrightarrow eval \mathcal{E} e \neq None by (induct e, auto simp: match-def mul-opt-def add-opt-def)
```

The environments of a program are the ones that match the context of the program.

```
definition envs :: prog \Rightarrow env \ set where envs \ p \equiv \{\mathcal{E}. \ match \ \mathcal{E} \ (ctxt \ p)\}
```

Evaluating the body of a well-formed program in an environment of the program never yields an error.

```
lemma eval-wfp:
```

```
wfp p \Longrightarrow \mathcal{E} \in envs \ p \Longrightarrow eval \ \mathcal{E} \ (body \ p) \neq None
by (metis envs-def eval-wfe mem-Collect-eq wfp-def)
```

Executing a program with values supplied to the parameters yields a non-negative integer result, or an error (None) if the parameters are not distinct, the number of supplied values differs from the number of parameters, or the evaluation of the body yields an error.

```
definition supply :: prog \Rightarrow nat \ list \Rightarrow env \ option where supply \ p \ us \equiv let \ vs = para \ p \ in if distinct \ vs \land length \ us = length \ vs then Some \ (map\text{-}of \ (zip \ vs \ us)) else None definition exec :: prog \Rightarrow nat \ list \Rightarrow nat \ option where exec \ p \ us \equiv
```

```
case supply p us of Some \mathcal{E} \Rightarrow eval \ \mathcal{E} \ (body \ p) \mid None \Rightarrow None
```

Executing a well-formed program with the same number of values as the number of parameters never yields an error.

```
lemma supply-wfp:

wfp p \Longrightarrow

length us = length \ (para \ p) \Longrightarrow

\exists \mathcal{E} \in envs \ p. \ supply \ p \ us = Some \ \mathcal{E}

by (auto

simp: wfp-def supply-def envs-def ctxt-def match-def split: option.split)

lemma exec-wfp:

wfp p \Longrightarrow length \ us = length \ (para \ p) \Longrightarrow exec \ p \ us \ne None

by (metis eval-wfp exec-def option.simps(5) supply-wfp)
```

2.1.4 Performance

As a non-functional semantic aspect, the cost (e.g. time and power) to execute a program is modeled as the number of doubling and addition operations.

```
fun coste :: expr \Rightarrow nat
where
coste (Const c) = 0 \mid
coste (Var v) = 0 \mid
coste (Double e) = 1 + coste e \mid
coste (Add e_1 e_2) = 1 + coste e_1 + coste e_2
definition costp :: prog \Rightarrow nat
where costp p \equiv coste (body p)
```

2.2 Requirement Specification

The target program must:

- 1. Be well-formed.
- 2. Have exactly the two parameters "x" and "y", in this order.
- 3. Produce the result f x y when x and y are supplied to "x" and "y", where f is defined below.
- 4. Not exceed cost 3.

```
definition f :: nat \Rightarrow nat \Rightarrow nat
where f x y \equiv 3 * x + 2 * y
```

```
definition spec_0 :: prog \Rightarrow bool

where spec_0 p \equiv

wfp p \land

para p = ["x", "y"] \land

(\forall x \ y. \ exec \ p \ [x, \ y] = Some \ (f \ x \ y)) \land

costp \ p \leq \beta
```

f is used by $spec_0$ to express a functional requirement on the execution of the program. $spec_0$ includes the non-functional requirement costp $p \leq 3$ and the syntactic interface requirement para p = ["x", "y"], which are not expressed by f alone and are expressible only in terms of programs. f can be computed by a program with cost higher than 3 and with more or different parameters; it can also be computed by programs in different target languages.

2.3 Stepwise Refinement

It is not difficult to write a program that satisfies $spec_0$ and to prove that it does. But with more complex target languages and requirement specifications, writing a program and proving that it satisfies the requirements is notoriously difficult. Stepwise refinement decomposes the proof into manageable pieces, constructing the implementation along the way. The following sequence of refinement steps may be overkill for obtaining an implementation of $spec_0$, but illustrates concepts that should apply to more complex cases.

2.3.1 Step 1

The second conjunct in $spec_0$ determines the parameters, leaving only the body to be determined. That conjunct also reduces the well-formedness of the program to the well-formedness of the body, and the execution of the program to the evaluation of the body.

```
abbreviation \Gamma_{xy} :: ctxt

where \Gamma_{xy} \equiv \{''x'', ''y''\}

abbreviation \mathcal{E}_{xy} :: nat \Rightarrow nat \Rightarrow env

where \mathcal{E}_{xy} x y \equiv [''x'' \mapsto x, ''y'' \mapsto y]

lemma reduce-prog-to-body:

para \ p = [''x'', ''y''] \Longrightarrow

wfp \ p = wfe \ \Gamma_{xy} \ (body \ p) \land

exec \ p \ [x, \ y] = eval \ (\mathcal{E}_{xy} \ x \ y) \ (body \ p)

by (auto \ simp: wfp-def ctxt-def exec-def supply-def fun-upd-twist)
```

Using lemma reduce-prog-to-body, and using the definition of costp to reduce the cost of the program to the cost of the body, $spec_0$ is refined as follows.

```
definition spec_1 :: prog \Rightarrow bool
where spec_1 p \equiv
wfe \ \Gamma_{xy} \ (body \ p) \land
para \ p = [''x'', ''y''] \land
(\forall x \ y. \ eval \ (\mathcal{E}_{xy} \ x \ y) \ (body \ p) = Some \ (f \ x \ y)) \land
coste \ (body \ p) \leq 3
lemma step\text{-}1\text{-}correct:
spec_1 \ p \implies spec_0 \ p
by (auto \ simp: \ spec_1\text{-}def \ spec_0\text{-}def \ reduce\text{-}prog\text{-}to\text{-}body \ costp\text{-}def})
```

 $spec_1$ and $spec_0$ are actually equivalent, but the definition of $spec_1$ is "closer" to the implementation than the definition of $spec_0$: the latter states constraints on the whole program, while the former states simpler constraints on the body, given that the parameters are already determined. The proof of step-1-correct can also be used to prove the equivalence of $spec_1$ and $spec_0$, but in general proving inclusion is easier than proving equivalence. Some of the following refinement steps yield non-equivalent predicates.

2.3.2 Step 2

The third conjunct in $spec_1$ says that the body computes $f \ x \ y$, which depends on both x and y, and which yields an odd result for some values of x and y. Thus the body cannot be a constant, a variable, or a double, leaving a sum as the only option. Adding $\exists \ e_1 \ e_2$, $body \ p = Add \ e_1 \ e_2$ as a conjunct to $spec_1$ and re-arranging the other conjuncts, moving some of them under the existential quantification so that they can be simplified in the next refinement step, $spec_1$ is refined as follows.

```
definition spec_2 :: prog \Rightarrow bool

where spec_2 p \equiv para p = ["x", "y"] \land (\exists e_1 e_2.

body p = Add e_1 e_2 \land wfe \Gamma_{xy} (body p) \land (\forall x y. eval (\mathcal{E}_{xy} x y) (body p) = Some (f x y)) \land coste (body p) \leq 3)

lemma step\text{-}2\text{-}correct:

spec_2 p \implies spec_1 p

by (auto simp: spec_2\text{-}def spec_1\text{-}def)
```

This refinement step is guided by an analysis of the constraints in $spec_1$.

2.3.3 Step 3

The fact that the body is a sum reduces the well-formedness, evaluation, and cost of the body to the well-formedness, evaluation, and cost of the addends.

lemma reduce-body-to-addends:

```
body p = Add e_1 e_2 \Longrightarrow
                          wfe \Gamma_{xy} (body p) = (wfe \Gamma_{xy} e_1 \wedge wfe \Gamma_{xy} e_2) \wedge
                             eval (\mathcal{E}_{xy} \ x \ y) \ (body \ p) = eval (\mathcal{E}_{xy} \ x \ y) \ e_1 \oplus eval (\mathcal{E}_{xy} \ x \ y) \ e_2 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_3 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_4 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_5 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_6 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_7 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_8 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_8 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y) \ e_9 \wedge eval (\mathcal{E}_{xy} \ x \ y)
                             coste\ (body\ p) = 1 + coste\ e_1 + coste\ e_2
by auto
```

Using reduce-body-to-addends and arithmetic simplification, spec₂ is refined as follows.

```
definition spec_3 :: proq \Rightarrow bool
where spec_3 p \equiv
  para p = ["x", "y"] \land
  (\exists e_1 \ e_2.
     body p = Add e_1 e_2 \wedge
     where \Gamma_{xy} e_1 \wedge
     wfe \Gamma_{xy} e_2 \wedge
     (\forall x \ y. \ eval \ (\mathcal{E}_{xy} \ x \ y) \ e_1 \oplus eval \ (\mathcal{E}_{xy} \ x \ y) \ e_2 = Some \ (f \ x \ y)) \ \land
     coste \ e_1 + coste \ e_2 \le 2)
lemma step-3-correct:
```

```
spec_3 p \Longrightarrow spec_2 p
by (auto simp: spec_3-def spec_2-def)
```

- No need to use reduce-body-to-addends explicitly,
- as the default rules that *auto* uses to prove it apply here too.

This refinement step defines the top-level structure of the body, reducing the constraints on the body to simpler constraints on its components.

2.3.4 Step 4

The second-to-last conjunct in $spec_3$ suggests to split f x y into two addends to be computed by e_1 and e_2 .

The addends 3 * x and 2 * y suggested by the definition of f would lead to a blind alley, where the cost constraints could not be satisfied—the resulting spec₄ would be always false. The refinement step would be "correct" (by strict inclusion) but the refinement sequence could never reach an implementation. It would be necessary to backtrack to $spec_3$ and split $f \times y$ differently.

To avoid the blind alley, the definition of f is rephrased as follows.

lemma *f-rephrased*:

```
f x y = x + (2 * x + 2 * y)
by (auto simp: f-def)
```

This rephrased definition of f does not use the multiplication by 3 of the original definition, which is not (directly) supported by the target language; it only uses operations supported by the language.

Using f-rephrased, $spec_3$ is refined as follows.

```
definition spec_4::prog\Rightarrow bool
where spec_4 p \equiv para p = ["x", "y"] \land (\exists e_1 e_2.
body p = Add e_1 e_2 \land wfe \Gamma_{xy} e_1 \land wfe \Gamma_{xy} e_2 \land (\forall x \ y. \ eval \ (\mathcal{E}_{xy} \ x \ y) \ e_1 = Some \ x) \land (\forall x \ y. \ eval \ (\mathcal{E}_{xy} \ x \ y) \ e_2 = Some \ (2 * x + 2 * y)) \land coste \ e_1 + coste \ e_2 \leq 2)
lemma step\text{-}4\text{-}correct:
spec_4 p \implies spec_3 p
by (auto simp: spec_4\text{-}def \ spec_3\text{-}def \ add\text{-}opt\text{-}def \ f\text{-}rephrased})
```

This refinement step reduces the functional constraint on the body to simpler functional constraints on the addends. The functional constraint can be decomposed in different ways, some of which are incompatible with the non-functional cost constraint: blind alleys are avoided by taking the non-functional constraint into account.

2.3.5 Step 5

The term x in the third-to-last conjunct in $spec_4$ is a shallow embedding of the program expression x, whose deep embedding is the term Var "x". Using the latter as e_1 , the third-to-last conjunct in $spec_4$ is satisfied; the expression is well-formed and has cost 0.

```
lemma first-addend:
```

```
e_1 = Var "x" \Longrightarrow eval (\mathcal{E}_{xy} x y) e_1 = Some x \land wfe \Gamma_{xy} e_1 \land coste e_1 = 0
by auto
```

Adding $e_1 = Var "x"$ as a conjunct to $spec_4$ and simplifying, $spec_4$ is refined as follows.

definition $spec_5 :: prog \Rightarrow bool$

```
where spec_5 p \equiv para p = ["x", "y"] \land (\exists e_2. body p = Add (Var "x") e_2 \land wfe \Gamma_{xy} e_2 \land (\forall x y. eval (\mathcal{E}_{xy} x y) e_2 = Some (2 * x + 2 * y)) \land coste e_2 \leq 2)
```

lemma step-5-correct:

```
spec_5 \ p \Longrightarrow spec_4 \ p
by (auto simp: spec_5-def spec_4-def)

— No need to use first-addend explicitly,

— as the default rules that auto uses to prove it apply here too.
```

This refinement step determines the first addend of the body, leaving only the second addend to be determined.

2.3.6 Step 6

The term 2 * x + 2 * y in the second-to-last conjunct of $spec_5$ is a shallow embedding of the program expression 2 * x + 2 * y, whose deep embedding is the term Add (Double (Var "x")) (Double (Var "y")). Using the latter as e_2 , the second-to-last conjunct in $spec_5$ is satisfied, but the last conjunct is not. The following factorization of the shallowly embedded expression leads to a reduced cost of the corresponding deeply embedded expression.

```
lemma factorization:
```

```
(2::nat) * x + 2 * y = 2 * (x + y)
by auto
```

The deeply embedded expression Double (Add (Var "x") (Var "y")), which corresponds to the shallowly embedded expression 2 * (x + y), satisfies the second-to-last conjunct of $spec_5$, is well-formed, and has cost 2.

lemma second-addend:

```
e_2 = Double \ (Add \ (Var "x") \ (Var "y")) \Longrightarrow eval \ (\mathcal{E}_{xy} \ x \ y) \ e_2 = Some \ (2 * x + 2 * y) \land wfe \ \Gamma_{xy} \ e_2 \land coste \ e_2 = 2
```

by (auto simp: add-opt-def mul-opt-def)

- No need to use *factorization* explicitly,
- as the default rules that *auto* uses to prove it apply here too.

Adding $e_2 = Double \ (Add \ (Var "x") \ (Var "y"))$ as a conjunct to $spec_5$ and simplifying, $spec_5$ is refined as follows.

definition $spec_6 :: prog \Rightarrow bool$

```
where spec_6 \ p \equiv para \ p = [''x'', \ ''y''] \land body \ p = Add \ (Var \ ''x'') \ (Double \ (Add \ (Var \ ''x'') \ (Var \ ''y'')))
lemma step-6-correct:
spec_6 \ p \Longrightarrow spec_5 \ p
by (auto \ simp \ add: \ spec_6-def spec_5-def second-addend simp \ del: \ eval.simps)
```

This refinement step determines the second addend of the body, leaving nothing else to be determined.

This and the previous refinement step turn semantic constraints on the program components e_1 and e_2 into syntactic definitions of such components.

2.3.7 Step 7

 $spec_6$, which defines the parameters and body, is refined to characterize a unique program in explicit syntactic form.

```
abbreviation p_0 :: prog
where p_0 \equiv
(para = [''x'', ''y''],
body = Add (Var ''x'') (Double (Add (Var ''x'') (Var ''y''))))
definition spec_7 :: prog \Rightarrow bool
where spec_7 p \equiv p = p_0

lemma step-7-correct:
spec_7 p \Longrightarrow spec_6 p
by (auto simp: spec_7-def spec_6-def)
```

The program satisfies $spec_0$ by construction. The program witnesses the consistency of the requirements, i.e. the fact that $spec_0$ is not always false.

```
spec_0 p_0

by (metis

step-1-correct

step-2-correct

step-3-correct

step-4-correct

step-5-correct

step-6-correct

step-7-correct

spec_7-def)
```

lemma p_0 -sat-spec₀:

From p_0 , the program text

prog
$$(x,y) \{x + 2 * (x + y)\}$$

is easily obtained.

Chapter 3

Second Example

Pop-refinement is illustrated via a simple derivation, in Isabelle/HOL, of a non-deterministic program that satisfies a hyperproperty.

3.1 Hyperproperties

Hyperproperties are predicates over sets of traces [3]. Hyperproperties capture security policies like non-interference [5], which applies to deterministic systems, and generalized non-interference (GNI) [11], which generalizes non-interference to non-deterministic systems.

The formulation of GNI in [3], which is derived from [12], is based on:

- A notion of traces as infinite streams of abstract states.
- Functions that map each state to low and high inputs and outputs, where 'low' and 'high' have the usual security meaning (e.g. 'low' means 'unclassified' and 'high' means 'classified'). These functions are homomorphically extended to map each trace to infinite streams of low and high inputs and outputs.

The following formulation is slightly more general, because the functions that return low and high inputs and outputs operate directly on abstract traces.

GNI says that for any two traces τ_1 and τ_2 , there is always a trace τ_3 with the same high inputs as τ_1 and the same low inputs and low outputs as τ_2 . Intuitively, this means that a low observer (i.e. one that only observes low inputs and low outputs of traces) cannot gain any information about high inputs (i.e. high inputs cannot interfere with low outputs) because observing a trace τ_2 is indistinguishable from observing some other trace τ_3 that has the same high inputs as an arbitrary trace τ_1 .

```
locale generalized-non-interference = fixes low-in :: '\tau \Rightarrow 'i — low inputs fixes low-out :: '\tau \Rightarrow 'o — low outputs fixes high-in :: '\tau \Rightarrow 'i — high inputs fixes high-out :: '\tau \Rightarrow 'o — high outputs

definition (in generalized-non-interference) GNI :: '\tau set \Rightarrow bool where GNI \mathcal{T} \equiv \forall \tau_1 \in \mathcal{T}. \ \forall \tau_2 \in \mathcal{T}. \ \exists \tau_3 \in \mathcal{T}.
high-in \tau_3 = high-in \tau_1 \land low-in \tau_3 = low-in \tau_2 \land low-out \tau_3 = low-out \tau_2
```

3.2 Target Programming Language

In the target language used in this example,¹ a program consists of a list of distinct state variables and a body of statements. The statements modify the variables by deterministically assigning results of expressions and by non-deterministically assigning random values. Expressions are built out of non-negative integer constants, state variables, and addition operations. Statements are combined via conditionals, whose tests compare expressions for equality, and via sequencing. Each variable stores a non-negative integer. Executing the body in a state yields a new state. Because of non-determinism, different new states are possible, i.e. executing the body in the same state may yield different new states at different times.

For instance, executing the body of the program

```
prog {
    vars {
        x
        y
    }
    body {
        if (x == y + 1) {
            x = 0;
        } else {
            x = y + 3;
        }
        randomize y;
        y = y + 2;
    }
}
```

in the state where x contains 4 and y contains 7, yields a new state where x always contains 10 and y may contain any number in $\{2, 3, ...\}$.

¹Even though this language has many similarities with the language in Section 2.1, the two languages are defined separately to keep Chapter 2 simpler.

3.2.1 Syntax

Variables are identified by names.

```
type-synonym name = string
```

Expressions are built out of constants, variables, and addition operations.

```
datatype \ expr = Const \ nat \ | \ Var \ name \ | \ Add \ expr \ expr
```

Statements are built out of deterministic assignments, non-deterministic assignments, conditionals, and sequencing.

```
datatype stmt =
  Assign name expr |
  Random name |
  IfEq expr expr stmt stmt |
  Seq stmt stmt
```

A program consists of a list of state variables and a body statement.

```
record prog =
  vars :: name list
  body :: stmt
```

3.2.2 Static Semantics

A context is a set of variables.

```
type-synonym ctxt = name set
```

Given a context, an expression is well-formed iff all its variables are in the context.

```
fun wfe :: ctxt \Rightarrow expr \Rightarrow bool

where

wfe \ \Gamma \ (Const \ c) \longleftrightarrow True \ |

wfe \ \Gamma \ (Var \ v) \longleftrightarrow v \in \Gamma \ |

wfe \ \Gamma \ (Add \ e_1 \ e_2) \longleftrightarrow wfe \ \Gamma \ e_1 \wedge wfe \ \Gamma \ e_2
```

Given a context, a statement is well-formed iff its deterministic assignments assign well-formed expressions to variables in the context, its non-deterministic assignments operate on variables in the context, and its conditional tests compare well-formed expressions.

```
\begin{array}{l} \mathbf{fun} \ \textit{wfs} :: \textit{ctxt} \Rightarrow \textit{stmt} \Rightarrow \textit{bool} \\ \mathbf{where} \\ \textit{wfs} \ \Gamma \ (\textit{Assign} \ \textit{v} \ e) \longleftrightarrow \textit{v} \in \Gamma \land \textit{wfe} \ \Gamma \ e \ | \\ \textit{wfs} \ \Gamma \ (\textit{Random} \ \textit{v}) \longleftrightarrow \textit{v} \in \Gamma \ | \\ \textit{wfs} \ \Gamma \ (\textit{IfEq} \ e_1 \ e_2 \ s_1 \ s_2) \longleftrightarrow \textit{wfe} \ \Gamma \ e_1 \land \textit{wfe} \ \Gamma \ e_2 \land \textit{wfs} \ \Gamma \ s_1 \land \textit{wfs} \ \Gamma \ s_2 \ | \end{array}
```

```
wfs \Gamma (Seq s_1 s_2) \longleftrightarrow wfs \Gamma s_1 \land wfs \Gamma s_2
```

The context of a program consists of the state variables.

```
definition ctxt :: prog \Rightarrow ctxt where ctxt p \equiv set (vars p)
```

A program is well-formed iff the variables are distinct and the body is well-formed in the context of the program.

```
definition wfp :: prog \Rightarrow bool
where wfp p \equiv distinct (vars p) \land wfs (ctxt p) (body p)
```

3.2.3 Dynamic Semantics

A state associates values (non-negative integers) to variables.

```
type-synonym state = name \rightarrow nat
```

A state matches a context iff state and context have the same variables.

```
definition match :: state \Rightarrow ctxt \Rightarrow bool where match \sigma \Gamma \equiv dom \sigma = \Gamma
```

Evaluating an expression in a state yields a value, or an error (*None*) if the expression contains a variable not in the state.

```
definition add\text{-}opt :: nat \ option \Rightarrow nat \ option \Rightarrow nat \ option \ (infixl \oplus 65)
— Lifting of addition to nat \ option.

where U_1 \oplus U_2 \equiv
case \ (U_1, \ U_2) \ of \ (Some \ u_1, \ Some \ u_2) \Rightarrow Some \ (u_1 + u_2) \mid - \Rightarrow None

fun eval :: state \Rightarrow expr \Rightarrow nat \ option
where
eval \ \sigma \ (Const \ c) = Some \ c \mid
eval \ \sigma \ (Var \ v) = \sigma \ v \mid
eval \ \sigma \ (Add \ e_1 \ e_2) = eval \ \sigma \ e_1 \oplus eval \ \sigma \ e_2
```

Evaluating a well-formed expression never yields an error, if the state matches the context.

```
lemma eval-wfe:
```

```
where \Gamma e \Longrightarrow match \sigma \Gamma \Longrightarrow eval \sigma e \neq None by (induct e, auto simp: match-def add-opt-def)
```

Executing a statement in a state yields a new state, or an error (*None*) if the evaluation of an expression yields an error or if an assignment operates on a variable not in the state. Non-determinism is modeled via a relation between old states and results, where a result is either a new state or an error.

```
inductive exec :: stmt \Rightarrow state \Rightarrow state \ option \Rightarrow bool
```

```
(- > - \leadsto - [50, 50, 50] 50)
where
  ExecAssignNoVar:
     v \notin dom \ \sigma \Longrightarrow Assign \ v \ e \rhd \sigma \leadsto None \ |
  ExecAssignEvalError:
     eval \ \sigma \ e = None \Longrightarrow Assign \ v \ e \rhd \sigma \leadsto None
  ExecAssignOK:
     v \in dom \ \sigma \Longrightarrow
     eval \ \sigma \ e = Some \ u \Longrightarrow
     Assign v \in \sigma \leadsto Some (\sigma(v \mapsto u))
  ExecRandomNoVar:
     v \notin dom \ \sigma \Longrightarrow Random \ v \rhd \sigma \leadsto None \ |
  ExecRandomOK:
     v \in dom \ \sigma \Longrightarrow Random \ v \rhd \sigma \leadsto Some \ (\sigma(v \mapsto u))
  ExecCondEvalError1:
     eval \ \sigma \ e_1 = None \Longrightarrow If Eq \ e_1 \ e_2 \ s_1 \ s_2 \rhd \sigma \leadsto None
  ExecCondEvalError2:
     eval \ \sigma \ e_2 = None \Longrightarrow If Eq \ e_1 \ e_2 \ s_1 \ s_2 \rhd \sigma \leadsto None \ |
  ExecCondTrue:
     eval \ \sigma \ e_1 = Some \ u_1 \Longrightarrow
     eval \ \sigma \ e_2 = Some \ u_2 \Longrightarrow
     u_1 = u_2 \Longrightarrow
     s_1 \rhd \sigma \leadsto \varrho \Longrightarrow
     If Eq \ e_1 \ e_2 \ s_1 \ s_2 \rhd \sigma \leadsto \varrho \mid
  ExecCondFalse:
     eval \ \sigma \ e_1 = Some \ u_1 \Longrightarrow
     eval \ \sigma \ e_2 = Some \ u_2 \Longrightarrow
     u_1 \neq u_2 \Longrightarrow
     s_2 \rhd \sigma \leadsto \varrho \Longrightarrow
     If Eq e_1 e_2 s_1 s_2 > \sigma \leadsto \varrho
  ExecSeqError:
     s_1 \rhd \sigma \leadsto None \Longrightarrow Seq \ s_1 \ s_2 \rhd \sigma \leadsto None \mid
  ExecSegOK:
     s_1 \rhd \sigma \leadsto Some \ \sigma' \Longrightarrow s_2 \rhd \sigma' \leadsto \varrho \Longrightarrow Seq \ s_1 \ s_2 \rhd \sigma \leadsto \varrho
The execution of any statement in any state always yields a result.
lemma exec-always:
  \exists \rho. \ s \rhd \sigma \leadsto \rho
proof (induct s arbitrary: \sigma)
  case Assign
  show ?case
  by (metis
     ExecAssignEvalError\ ExecAssignNoVar\ ExecAssignOK\ option.exhaust)
  case Random
  show ?case
```

```
by (metis ExecRandomNoVar ExecRandomOK)
\mathbf{next}
  case IfEq
  thus ?case
  by (metis
   ExecCondEvalError1\ ExecCondEvalError2\ ExecCondFalse\ ExecCondTrue
    option.exhaust)
\mathbf{next}
  case Seq
 thus ?case
 by (metis ExecSeqError ExecSeqOK option.exhaust)
Executing a well-formed statement in a state that matches the context never
yields an error and always yields states that match the context.
lemma exec-wfs-match:
  \textit{wfs} \ \Gamma \ s \Longrightarrow \textit{match} \ \sigma \ \Gamma \Longrightarrow s \vartriangleright \sigma \leadsto \textit{Some} \ \sigma' \Longrightarrow \textit{match} \ \sigma' \ \Gamma
proof (induct s arbitrary: \sigma \sigma')
  case (Assign \ v \ e)
  then obtain u
  where eval \sigma e = Some u
  and \sigma' = \sigma(v \mapsto u)
  by (auto elim: exec.cases)
  with Assign
  show ?case
  by (metis
   domIff\ dom-fun-upd\ fun-upd-triv\ match-def\ option.distinct(1)\ wfs.simps(1))
  case (Random \ v)
  then obtain u
  where \sigma' = \sigma(v \mapsto u)
  by (auto elim: exec.cases)
  with Random
  show ?case
  by (metis
   domIff\ dom\ fun\ upd\ fun\ upd\ triv\ match\ def\ option\ .distinct(1)\ wfs.simps(2))
  case (IfEq e_1 e_2 s_1 s_2)
  hence s_1 \rhd \sigma \leadsto Some \ \sigma' \lor s_2 \rhd \sigma \leadsto Some \ \sigma'
  by (blast elim: exec.cases)
  with IfEq
  show ?case
  by (metis\ wfs.simps(3))
next
  case (Seq s_1 s_2)
  then obtain \sigma_i
```

```
where s_1 \rhd \sigma \leadsto Some \ \sigma_i
  and s_2 > \sigma_i \leadsto Some \ \sigma'
  by (blast elim: exec.cases)
  with Seq
 show ?case
 by (metis\ wfs.simps(4))
\mathbf{qed}
lemma exec-wfs-no-error:
  wfs \Gamma s \Longrightarrow match \sigma \Gamma \Longrightarrow \neg (s \rhd \sigma \leadsto None)
proof (induct s arbitrary: \sigma)
  case (Assign \ v \ e)
 hence Var: v \in dom \ \sigma
  by (auto simp: match-def)
 from Assign
 have eval \sigma e \neq None
  by (metis\ eval\text{-}wfe\ wfs.simps(1))
  with Var
  show ?case
  by (auto elim: exec.cases)
\mathbf{next}
  case (Random \ v)
  thus ?case
  by (auto simp: match-def elim: exec.cases)
next
  case (IfEq e_1 e_2 s_1 s_2)
  then obtain u_1 u_2
  where eval \sigma e_1 = Some u_1
  and eval \sigma e_2 = Some u_2
  by (metis\ eval\text{-}wfe\ not\text{-}Some\text{-}eq\ wfs.simps(3))
  with IfEq
 show ?case
  by (auto elim: exec.cases)
next
  case (Seq s_1 s_2)
  \mathbf{show}~? case
  proof
    assume Seq s_1 s_2 \rhd \sigma \leadsto None
    hence s_1 \rhd \sigma \leadsto None \lor (\exists \sigma'. s_1 \rhd \sigma \leadsto Some \sigma' \land s_2 \rhd \sigma' \leadsto None)
    by (auto elim: exec.cases)
    with Seq exec-wfs-match
    \mathbf{show}\ \mathit{False}
    by (metis\ wfs.simps(4))
  qed
qed
```

```
lemma exec-wfs-always-match:

wfs \Gamma s \Longrightarrow match \sigma \Gamma \Longrightarrow \exists \sigma'. s \rhd \sigma \leadsto Some \sigma' \land match \sigma' \Gamma

by (metis exec-always exec-wfs-match exec-wfs-no-error option.exhaust)
```

The states of a program are the ones that match the context of the program.

```
definition states :: prog \Rightarrow state \ set where states \ p \equiv \{\sigma. \ match \ \sigma \ (ctxt \ p)\}
```

Executing the body of a well-formed program in a state of the program always yields some state of the program, and never an error.

```
lemma exec-wfp-no-error:

wfp p \Longrightarrow \sigma \in states \ p \Longrightarrow \neg \ (body \ p \rhd \sigma \leadsto None)

by (metis exec-wfs-no-error mem-Collect-eq states-def wfp-def)

lemma exec-wfp-in-states:

wfp p \Longrightarrow \sigma \in states \ p \Longrightarrow body \ p \rhd \sigma \leadsto Some \ \sigma' \Longrightarrow \sigma' \in states \ p

by (metis exec-wfs-match mem-Collect-eq states-def wfp-def)

lemma exec-wfp-always-in-states:

wfp p \Longrightarrow \sigma \in states \ p \Longrightarrow \exists \sigma'. \ body \ p \rhd \sigma \leadsto Some \ \sigma' \land \sigma' \in states \ p

by (metis exec-always exec-wfp-in-states exec-wfp-no-error option.exhaust)
```

Program execution can be described in terms of the trace formalism in [3]. Every possible (non-erroneous) execution of a program can be described by a trace of two states—initial and final. In this definition, erroneous executions do not contribute to the traces of a program; only well-formed programs are of interest, which, as proved above, never execute erroneously. Due to non-determinism, there may be traces with the same initial state and different final states.

```
record trace = initial :: state

final :: state

inductive-set traces :: prog \Rightarrow trace set

for p::prog

where [intro!]:

\sigma \in states \ p \Longrightarrow body \ p \rhd \sigma \leadsto Some \ \sigma' \Longrightarrow (|initial = \sigma, final = \sigma'|) \in traces \ p
```

The finite traces of a program could be turned into infinite traces by infinitely stuttering the final state, obtaining the 'executions' defined in [3]. However, such infinite traces carry no additional information compared to the finite traces from which they are derived: for programs in this language, the infinite executions of [3] are modeled as finite traces of type trace.

3.3 Requirement Specification

The target program must process low and high inputs to yield low and high outputs, according to constraints that involve both non-determinism and underspecification, with no information flowing from high inputs to low outputs.²

3.3.1 Input/Output Variables

Even though the language defined in Section 3.2 has no explicit features for input and output, an external agent could write values into some variables, execute the program body, and read values from some variables. Thus, variables may be regarded as holding inputs (in the initial state) and outputs (in the final state).

In the target program, four variables are required:

- A variable "lowIn" to hold low inputs.
- A variable "lowOut" to hold low outputs.
- A variable "highIn" to hold high inputs.
- A variable "highOut" to hold high outputs.

Other variables are allowed but not required.

```
definition io-vars :: prog \Rightarrow bool where io-vars p \equiv ctxt p \supseteq \{"lowIn", "lowOut", "highIn", "highOut"\}
```

3.3.2 Low Processing

If the low input is not 0, the low output must be 1 plus the low input. That is, for every possible execution of the program where the initial state's low input is not 0, the final state's low output must be 1 plus the low input. If there are multiple possible final states for the same initial state due to non-determinism, all of them must have the same required low output. Thus, processing of non-0 low inputs must be deterministic.

```
definition low\text{-}proc\text{-}non0 :: prog \Rightarrow bool

where low\text{-}proc\text{-}non0 \ p \equiv

\forall \sigma \in states \ p. \ \forall \sigma'.

the \ (\sigma ''lowIn'') \neq 0 \land

body \ p \rhd \sigma \leadsto Some \ \sigma' \longrightarrow

the \ (\sigma' ''lowOut'') = the \ (\sigma '''lowIn'') + 1
```

 $^{^2}$ As in Section 3.1, 'low' and 'high' have the usual security meaning, e.g. 'low' means 'unclassified' and 'high' means 'classified'.

If the low input is 0, the low output must be a random value. That is, for every possible initial state of the program whose low input is 0, and for every possible value, there must exist an execution of the program whose final state has that value as low output. Executions corresponding to all possible values must be possible. Thus, processing of the 0 low input must be non-deterministic.

```
definition low\text{-}proc\text{-}\theta :: prog \Rightarrow bool

where low\text{-}proc\text{-}\theta p \equiv \forall \sigma \in states p. \forall u.

the (\sigma ''lowIn'') = \theta \longrightarrow (\exists \sigma'. body p \rhd \sigma \leadsto Some \sigma' \land the (\sigma' ''lowOut'') = u)
```

3.3.3 High Processing

The high output must be at least as large as the sum of the low and high inputs. That is, for every possible execution of the program, the final state's high output must satisfy the constraint. If there are multiple possible final states for the same initial state due to non-determinism, all of them must contain a high output that satisfies the constraint. Since different high outputs may satisfy the constraint given the same inputs, not all the possible final states from a given initial state must have the same high output. Thus, processing of high inputs is under-specified; it can be realized deterministically or non-deterministically.

```
definition high-proc :: prog \Rightarrow bool

where high-proc p \equiv \forall \sigma \in states \ p. \ \forall \sigma'.

body \ p \rhd \sigma \leadsto Some \ \sigma' \longrightarrow the \ (\sigma'''highOut'') \geq the \ (\sigma'''lowIn'') + the \ (\sigma'''highIn'')
```

3.3.4 All Requirements

Besides satisfying the above requirements on input/output variables, low processing, and high processing, the target program must be well-formed.

```
definition spec_0 :: prog \Rightarrow bool

where spec_0 p \equiv

wfp p \land io\text{-}vars p \land low\text{-}proc\text{-}non0 p \land low\text{-}proc\text{-}0 p \land high\text{-}proc p
```

3.3.5 Generalized Non-Interference

The parameters of the GNI formulation in Section 3.1 are instantiated according to the target program under consideration. In an execution of the program:

- The value of the variable "low In" in the initial state is the low input.
- The value of the variable "lowOut" in the final state is the low output.

- The value of the variable "highIn" in the initial state is the high input.
- The value of the variable "highOut" in the final state is the high output.

```
definition low-in :: trace \Rightarrow nat
where low-in \tau \equiv the \ (initial \ \tau \ ''lowIn'')
definition low-out :: trace \Rightarrow nat
where low-out \tau \equiv the (final \ \tau "lowOut")
definition high-in :: trace \Rightarrow nat
where high-in \tau \equiv the \ (initial \ \tau \ "highIn")
definition high-out :: trace \Rightarrow nat
where high-out \tau \equiv the (final \ \tau "highOut")
interpretation
  Target: generalized-non-interference low-in low-out high-in high-out .
abbreviation GNI :: trace \ set \Rightarrow bool
where GNI \equiv Target.GNI
The requirements in spec_0 imply that the set of traces of the target program
satisfies GNI.
lemma spec_0-GNI:
  spec_0 \ p \Longrightarrow GNI \ (traces \ p)
proof (auto simp: Target.GNI-def)
  assume Spec: spec_0 p
  — Consider a trace \tau_1 and its high input:
  fix \tau_1::trace
  \operatorname{def} highIn \equiv high-in \ \tau_1
  — Consider a trace \tau_2, its low input and output, and its states:
  fix \tau_2::trace
  \mathbf{def}\ lowIn \equiv low-in\ \tau_2
  and lowOut \equiv low-out \ \tau_2
  and \sigma_2 \equiv initial \ \tau_2
  and \sigma_2' \equiv final \ \tau_2
  assume \tau_2 \in traces p
  hence Exec2: body p > \sigma_2 \rightsquigarrow Some \ \sigma_2'
  and State2: \sigma_2 \in states p
  by (auto simp: \sigma_2-def \sigma_2'-def elim: traces.cases)
  — Construct the initial state of the witness trace \tau_3:
  \mathbf{def} \ \sigma_3 \equiv \sigma_2 \ ("highIn" \mapsto highIn)
  hence LowIn3: the (\sigma_3 "lowIn") = lowIn
  and \mathit{HighIn3}: \mathit{the}\ (\sigma_3\ ''\mathit{highIn''}) = \mathit{highIn}
  by (auto simp: lowIn-def low-in-def \sigma_2-def)
```

```
from Spec State2
have State3: \sigma_3 \in states p
by (auto simp: \sigma_3-def states-def match-def spec<sub>0</sub>-def io-vars-def)
— Construct the final state of \tau_3, and \tau_3, by cases on lowIn:
show
 \exists \tau_3 \in traces \ p.
   \mathit{high-in}\ \tau_3 = \mathit{high-in}\ \tau_1 \ \land
    low-in \tau_3 = low-in \tau_2 \wedge
    low-out \tau_3 = low-out \tau_2
proof (cases lowIn)
 case \theta
  — Use as final state the one required by low-proc-0:
 with Spec State3 LowIn3
 obtain \sigma_3
 where Exec3: body p > \sigma_3 \rightsquigarrow Some \ \sigma_3'
 and LowOut3: the (\sigma_3' "lowOut") = lowOut
 by (auto simp: spec_0-def low-proc-0-def)
 — Construct \tau_3 from its initial and final states:
 def \tau_3 \equiv (initial = \sigma_3, final = \sigma_3')
 with Exec3 State3
 have Trace3: \tau_3 \in traces p
 by auto
 have high-in \tau_3 = high-in \tau_1
 and low-in \tau_3 = low-in \tau_2
 and low-out \tau_3 = low-out \tau_2
 by (auto simp:
   high-in-def low-in-def low-out-def
   \tau_3-def \sigma_2-def \sigma_2'-def
   highIn-def lowIn-def lowOut-def
    LowIn3 HighIn3 LowOut3)
 with Trace3
 show ?thesis
 by auto
next
 case Suc
 hence Not\theta: lowIn \neq \theta
 by auto
 — Derive \tau_2's low output from low-proc-non0:
 with Exec2 State2 Spec
 have LowOut2: lowOut = lowIn + 1
 by (auto simp:
    spec_0-def low-proc-non0-def \sigma_2-def \sigma_2'-def
   low-in-def low-out-def lowIn-def lowOut-def)
  — Use any final state for \tau_3:
 from Spec
 have wfp p
```

```
by (auto simp: spec_0-def)
   with State3
   obtain \sigma_3
   where Exec3: body p > \sigma_3 \rightsquigarrow Some \ \sigma_3'
   \mathbf{by}\ (\mathit{metis}\ \mathit{exec-always}\ \mathit{exec-wfp-no-error}\ \mathit{not-Some-eq})
   — Derive \tau_3's low output from low-proc-non0:
   with State3 Spec Not0
   have LowOut3: the (\sigma_3' "lowOut") = lowIn + 1
   by (auto simp: spec_0-def low-proc-non0-def LowIn3)
   — Construct \tau_3 from its initial and final states:
   \mathbf{def} \ \tau_3 \equiv (\mathit{initial} = \sigma_3, \mathit{final} = \sigma_3')
   with Exec3 State3
   have Trace3: \tau_3 \in traces p
   by auto
   have high-in \tau_3 = high-in \tau_1
   and low-in \tau_3 = low-in \tau_2
   and low-out \tau_3 = low-out \tau_2
   by (auto simp:
      high-in-def low-in-def low-out-def
      \tau_3-def \sigma_3-def \sigma_2-def
      LowOut2 LowOut3
      highIn-def lowOut-def[unfolded low-out-def, symmetric])
   with Trace3
   show ?thesis
   by auto
  qed
qed
```

Since GNI is implied by $spec_0$ and since every pop-refinement of $spec_0$ implies $spec_0$, GNI is preserved through every pop-refinement of $spec_0$. Pop-refinement differs from the popular notion of refinement as inclusion of sets of traces (e.g. [1]), which does not preserve GNI [3].

3.4 Stepwise Refinement

The remark at the beginning of Section 2.3 applies here as well: the following sequence of refinement steps may be overkill for obtaining an implementation of $spec_0$, but illustrates concepts that should apply to more complex cases.

3.4.1 Step 1

The program needs no other variables besides those prescribed by *io-vars*. Thus, *io-vars* is refined to a stronger condition that constrains the program to contain exactly those variables, in a certain order.

```
abbreviation vars_0 :: name \ list
where vars_0 \equiv ["lowIn", "lowOut", "highIn", "highOut"]
— The order of the variables in the list is arbitrary.
lemma vars_0-correct:
  vars p = vars_0 \Longrightarrow io\text{-}vars p
by (auto simp: io-vars-def ctxt-def)
The refinement of io-vars reduces the well-formedness of the program to the
well-formedness of the body.
abbreviation \Gamma_0 :: ctxt
where \Gamma_0 \equiv \{"lowIn", "lowOut", "highIn", "highOut"\}
lemma reduce-wf-prog-to-body:
  vars \ p = vars_0 \Longrightarrow wfp \ p \longleftrightarrow wfs \ \Gamma_0 \ (body \ p)
by (auto simp: wfp-def ctxt-def)
The refinement of io-vars induces a simplification of the processing constraints:
since the context of the program is now defined to be \Gamma_0, the \sigma \in states p
conditions are replaced with match \sigma \Gamma_0 conditions.
definition low-proc-non \theta_1 :: prog \Rightarrow bool
where low-proc-non\theta_1 p \equiv
  \forall \sigma \sigma'.
    match \sigma \Gamma_0 \wedge
    the (\sigma''lowIn'') \neq 0 \land
    body \ p \rhd \sigma \leadsto Some \ \sigma' \longrightarrow
    the (\sigma' "lowOut") = the (\sigma "lowIn") + 1
lemma low-proc-non\theta_1-correct:
  \mathit{vars}\ \mathit{p} = \mathit{vars}_0 \Longrightarrow \mathit{low-proc-non0}_1\ \mathit{p} \longleftrightarrow \mathit{low-proc-non0}\ \mathit{p}
by (auto simp: low-proc-non0<sub>1</sub>-def low-proc-non0-def states-def ctxt-def)
definition low-proc-\theta_1 :: proq \Rightarrow bool
where low-proc-\theta_1 p \equiv
  \forall \sigma u.
    match \sigma \Gamma_0 \wedge
    the (\sigma''lowIn'') = 0 \longrightarrow
    (\exists \sigma'. body \ p \rhd \sigma \leadsto Some \ \sigma' \land the \ (\sigma' "lowOut") = u)
lemma low-proc-\theta_1-correct:
  vars \ p = vars_0 \Longrightarrow low\text{-}proc\text{-}\theta_1 \ p \longleftrightarrow low\text{-}proc\text{-}\theta \ p
by (auto simp: low-proc-0<sub>1</sub>-def low-proc-0-def states-def ctxt-def)
definition high-proc_1 :: prog \Rightarrow bool
where high-proc_1 p \equiv
 \forall \sigma \sigma'.
```

```
match \sigma \Gamma_0 \wedge body \ p \rhd \sigma \leadsto Some \ \sigma' \longrightarrow the \ (\sigma' ''highOut'') \geq the \ (\sigma ''lowIn'') + the \ (\sigma ''highIn'')

lemma high-proc<sub>1</sub>-correct:

vars p = vars_0 \Longrightarrow high-proc_1 \ p \longleftrightarrow high-proc \ p

by (auto simp: high-proc<sub>1</sub>-def high-proc-def states-def ctxt-def)
```

The refinement of $spec_0$ consists of the refinement of io-vars and of the simplified constraints.

```
definition spec_1 :: prog \Rightarrow bool
where spec_1 p \equiv
  vars p = vars_0 \land
  wfs \Gamma_0 (body p) \wedge
  low-proc-non\theta_1 p \wedge
  low-proc-\theta_1 p \wedge
  high-proc_1 p
lemma step-1-correct:
  spec_1 \ p \Longrightarrow spec_0 \ p
by (auto simp:
  spec_1-def spec_0-def
  vars_0-correct
  reduce-wf-prog-to-body
  low-proc-non 0_1-correct
  low-proc-0_1-correct
  high-proc_1-correct)
```

3.4.2 Step 2

The body of the target program is split into two sequential statements—one to compute the low output and one to compute the high output.

```
definition body-split :: prog \Rightarrow stmt \Rightarrow stmt \Rightarrow bool where body-split p \ s_L \ s_H \equiv body \ p = Seq \ s_L \ s_H— The order of the two statements in the body is arbitrary.
```

The splitting reduces the well-formedness of the body to the well-formedness of the two statements.

```
lemma reduce-wf-body-to-stmts:

body-split p \ s_L \ s_H \Longrightarrow wfs \ \Gamma_0 \ (body \ p) \longleftrightarrow wfs \ \Gamma_0 \ s_L \wedge wfs \ \Gamma_0 \ s_H

by (auto simp: body-split-def)
```

The processing predicates over programs are refined to predicates over the statements s_L and s_H . Since s_H follows s_L :

- s_H must not change the low output, which is computed by s_L .
- s_L must not change the low and high inputs, which are used by s_H .

```
definition low-proc-non \theta_2 :: stmt \Rightarrow bool
where low-proc-non\theta_2 s_L \equiv
  \forall \sigma \sigma'.
    match \sigma \Gamma_0 \wedge
     the (\sigma "lowIn") \neq 0 \land
    s_L \rhd \sigma \leadsto Some \ \sigma' \longrightarrow
    the (\sigma' "lowOut") = the (\sigma "lowIn") + 1
definition low-proc-\theta_2 :: stmt \Rightarrow bool
where low-proc-\theta_2 s_L \equiv
  \forall \sigma u.
    match \sigma \Gamma_0 \wedge
    the (\sigma "lowIn") = 0 \longrightarrow
    (\exists \sigma'. \ s_L \rhd \sigma \leadsto Some \ \sigma' \land the \ (\sigma' "lowOut") = u)
definition low-proc-no-input-change :: <math>stmt \Rightarrow bool
where low-proc-no-input-change s_L \equiv
  \forall \sigma \sigma'.
    match \sigma \Gamma_0 \wedge
    s_L \rhd \sigma \leadsto \mathit{Some} \ \sigma' \longrightarrow
    the (\sigma' "lowIn") = the (\sigma "lowIn") \wedge
    the (\sigma' "highIn") = the (\sigma "highIn")
definition high-proc_2 :: stmt \Rightarrow bool
where high-proc_2 s_H \equiv
  \forall \sigma \sigma'.
    match \sigma \Gamma_0 \wedge
    s_H \rhd \sigma \leadsto Some \ \sigma' \longrightarrow
    the (\sigma' "highOut") \ge the (\sigma "lowIn") + the (\sigma "highIn")
definition high-proc-no-low-output-change :: stmt \Rightarrow bool
where high-proc-no-low-output-change s_H \equiv
  \forall \sigma \sigma'.
    match \sigma \Gamma_0 \wedge
    s_H \rhd \sigma \leadsto Some \ \sigma' \longrightarrow
    the (\sigma' "lowOut") = the (\sigma "lowOut")
lemma proc_2-correct:
  assumes Body: body-split p s_L s_H
  assumes WfLow: wfs \Gamma_0 s_L
  assumes WfHigh: wfs \Gamma_0 s_H
  assumes LowNon\theta: low-proc-non\theta_2 s_L
```

```
assumes Low\theta: low-proc-\theta_2 s_L
  assumes LowSame: low-proc-no-input-change <math>s_L
  assumes High: high-proc_2 \ s_H
 assumes HighSame: high-proc-no-low-output-change s_H
 shows low-proc-non\theta_1 p \land low-proc-\theta_1 p \land high-proc_1 p
proof auto
   - Processing of non-0 low input:
 case goal1
 show ?case
 proof (auto simp: low-proc-non\theta_1-def)
   fix \sigma \sigma'
   assume body p \rhd \sigma \leadsto Some \sigma'
   with Body
   obtain \sigma_i
   where ExecLow: s_L > \sigma \leadsto Some \ \sigma_i
   and ExecHigh: s_H \triangleright \sigma_i \rightsquigarrow Some \ \sigma'
   by (auto simp: body-split-def elim: exec.cases)
   assume Non\theta: the (\sigma''lowIn'') > \theta
   assume InitMatch: match \sigma \Gamma_0
   with ExecLow WfLow
   have match \sigma_i \Gamma_0
   by (auto simp: exec-wfs-match)
   with Non0 InitMatch ExecLow ExecHigh HighSame LowNon0
   show the (\sigma' "lowOut") = Suc (the <math>(\sigma "lowIn"))
   unfolding high-proc-no-low-output-change-def low-proc-non02-def
   by (metis Suc-eq-plus1 gr-implies-not0)
 qed
next
  — Processing of 0 low input:
 case goal2
 show ?case
 proof (auto simp: low-proc-\theta_1-def)
   assume InitMatch: match \sigma \Gamma_0
   and the (\sigma''lowIn'') = \theta
   with Low\theta
   obtain \sigma_i
   where ExecLow: s_L \rhd \sigma \leadsto Some \ \sigma_i
   and LowOut: the (\sigma_i "lowOut") = u
   by (auto simp: low-proc-\theta_2-def)
   from InitMatch ExecLow WfLow
   have MidMatch: match \sigma_i \Gamma_0
   by (auto simp: exec-wfs-match)
   with WfHigh
   obtain \sigma'
   where ExecHigh: s_H > \sigma_i \rightsquigarrow Some \ \sigma'
```

```
by (metis exec-wfs-always-match)
   \mathbf{with}\ \mathit{HighSame}\ \mathit{MidMatch}
   have the (\sigma' "lowOut") = the (\sigma_i "lowOut")
   by (auto simp: high-proc-no-low-output-change-def)
   with ExecLow ExecHigh Body LowOut
   show \exists \sigma'. body p \rhd \sigma \leadsto Some \ \sigma' \land the \ (\sigma' "lowOut") = u
   by (metis (hide-lams, no-types) ExecSeqOK body-split-def)
  qed
next
  — Processing of high input:
 case qoal3
  show ?case
  proof (auto simp: high-proc<sub>1</sub>-def)
   fix \sigma \sigma'
   assume body p > \sigma \leadsto Some \sigma'
   with Body
   obtain \sigma_i
   where ExecLow: s_L \rhd \sigma \leadsto Some \ \sigma_i
   and ExecHigh: s_H > \sigma_i \rightsquigarrow Some \ \sigma'
   by (auto simp: body-split-def elim: exec.cases)
   assume InitMatch: match \sigma \Gamma_0
   with ExecLow WfLow
   have match \sigma_i \Gamma_0
   by (auto simp: exec-wfs-match)
   with InitMatch ExecLow ExecHigh LowSame High
   show the (\sigma' ''highOut'') > the (\sigma ''lowIn'') + the (\sigma ''highIn'')
   unfolding low-proc-no-input-change-def high-proc2-def
   by metis
  qed
qed
```

The refined specification consists of the splitting of the body into the two sequential statements and the refined well-formedness and processing constraints.

```
\begin{array}{l} \textbf{definition} \; spec_2 :: \; prog \Rightarrow bool \\ \textbf{where} \; spec_2 \; p \equiv \\ vars \; p = vars_0 \; \land \\ (\exists \; s_L \; s_H. \\ body\text{-split} \; p \; s_L \; s_H \; \land \\ wfs \; \Gamma_0 \; s_L \; \land \\ wfs \; \Gamma_0 \; s_H \; \land \\ low\text{-proc-non} \theta_2 \; s_L \; \land \\ low\text{-proc-no-input-change} \; s_L \; \land \\ high\text{-proc-no-low-output-change} \; s_H) \end{array}
```

```
lemma step-2-correct:

spec_2 \ p \Longrightarrow spec_1 \ p

by (auto simp: spec_2-def spec_1-def reduce-wf-body-to-stmts proc_2-correct)
```

3.4.3 Step 3

The processing constraints low-proc- $non\theta_2$ and low-proc- θ_2 on s_L suggest the use of a conditional that randomizes "lowOut" if "lowIn" is 0, and stores 1 plus "lowIn" into "lowOut" otherwise.

```
abbreviation s_{L0} :: stmt
where s_{L0} \equiv
  IfEq
    (Var "lowIn")
   (Const \ \theta)
    (Random ''lowOut'')
   (Assign "lowOut" (Add (Var "lowIn") (Const 1)))
lemma wfs-s_{L0}:
  wfs \Gamma_0 s_{L0}
by auto
lemma low-proc-non\theta-s_{L0}:
  low-proc-non\theta_2 s_{L0}
proof (auto simp only: low-proc-non\theta_2-def)
 fix \sigma \sigma'
  assume Match: match \sigma \Gamma_0
  assume s_{L0} \rhd \sigma \leadsto Some \sigma'
  and the (\sigma''lowIn'') > 0
  hence (Assign "lowOut" (Add (Var "lowIn") (Const 1))) \rhd \sigma \leadsto Some \sigma'
  by (auto elim: exec.cases)
 hence \sigma' = \sigma ("lowOut" \mapsto the (eval \sigma (Add (Var "lowIn") (Const 1))))
  by (auto elim: exec.cases)
  with Match
  show the (\sigma' "lowOut") = the (\sigma "lowIn") + 1
  by (auto simp: match-def add-opt-def split: option.split)
qed
lemma low-proc-\theta-s_{L0}:
  low-proc-\theta_2 s_{L0}
proof (auto simp only: low-proc-0<sub>2</sub>-def)
  fix \sigma u
  assume Match: match \sigma \Gamma_0
  and the (\sigma''lowIn'') = 0
  hence LowIn\theta: \sigma "lowIn" = Some \theta
  by (cases \sigma "lowIn", auto simp: match-def)
```

```
from Match
  have "lowOut" \in dom \sigma
  by (auto simp: match-def)
  then obtain \sigma'
  where ExecRand: Random "lowOut" > \sigma \leadsto Some \sigma'
  and \sigma' = \sigma \ ("lowOut" \mapsto u)
  by (auto intro: ExecRandomOK)
  hence the (\sigma' "lowOut") = u
  by auto
  with ExecRand LowIn0
 show \exists \sigma'. s_{L0} \rhd \sigma \leadsto Some \ \sigma' \land the \ (\sigma' "lowOut") = u
 by (metis\ ExecCondTrue\ eval.simps(1)\ eval.simps(2))
qed
lemma low-proc-no-input-change-s_{L0}:
  low-proc-no-input-change s_{L0}
\mathbf{proof}\ (\mathit{unfold}\ \mathit{low-proc-no-input-change-def}\ ,\ \mathit{clarify})
  fix \sigma \sigma'
  assume s_{L0} \rhd \sigma \leadsto Some \sigma'
  hence
    Random ''lowOut'' \rhd \sigma \leadsto Some \ \sigma' \lor
   Assign "lowOut" (Add (Var "lowIn") (Const 1)) \triangleright \sigma \leadsto Some \sigma'
  by (auto elim: exec.cases)
  thus
    the (\sigma' "lowIn") = the (\sigma "lowIn") \wedge
   the (\sigma' "highIn") = the (\sigma "highIn")
 by (auto elim: exec.cases)
qed
The refined specification is obtained by simplification using the definition of s_L.
definition spec_3 :: prog \Rightarrow bool
where spec_3 p \equiv
  vars p = vars_0 \land
  (\exists s_H.
    body-split p s_{L0} s_H \wedge
   wfs \Gamma_0 s_H \wedge
   high-proc_2 \ s_H \ \land
   high-proc-no-low-output-change s_H)
lemma step-3-correct:
  spec_3 p \Longrightarrow spec_2 p
unfolding spec_3-def spec_2-def
by (metis
  wfs-s_{L0} low-proc-non0-s_{L0} low-proc-low-proc-no-input-change-s_{L0})
The non-determinism required by low-proc-0 cannot be pop-refined away. In
```

particular, s_L cannot be defined to copy the high input to the low output when the low input is 0, which would lead to a program that does not satisfy GNI.

3.4.4 Step 4

where high- $proc_4$ $s_H \equiv$

definition $high-proc_4 :: stmt \Rightarrow bool$

The processing constraint $high-proc_2$ on s_H can be satisfied in different ways. A simple way is to pick the sum of the low and high inputs: $high-proc_2$ is refined by replacing the inequality with an equality.

```
\forall \sigma \sigma'.
    match \sigma \Gamma_0 \wedge
    s_H \rhd \sigma \leadsto Some \ \sigma' \longrightarrow
    the (\sigma' "highOut") = the (\sigma "lowIn") + the (\sigma "highIn")
lemma high-proc<sub>4</sub>-correct:
  high-proc_4 \ s_H \Longrightarrow high-proc_2 \ s_H
by (auto simp: high-proc_4-def\ high-proc_2-def)
The refined specification is obtained by substituting the refined processing con-
straint on s_H.
definition spec_4 :: proq \Rightarrow bool
where spec_4 p \equiv
  vars p = vars_0 \land
  (\exists s_H.
    body-split p \ s_{L0} \ s_H \ \land
    wfs \Gamma_0 s_H \wedge
    high-proc_4 s_H \wedge
    high-proc-no-low-output-change s_H)
lemma step-4-correct:
  spec_4 p \Longrightarrow spec_3 p
by (auto simp: spec_4-def spec_3-def high-proc_4-correct)
```

3.4.5 Step 5

The refined processing constraint $high-proc_4$ on s_H suggest the use of an assignment that stores the sum of "lowIn" and "highIn" into "highOut".

```
abbreviation s_{H0} :: stmt where s_{H0} \equiv Assign "highOut" (Add (Var "lowIn") (Var "highIn")) lemma wfs-s_{H0}: wfs \Gamma_0 s_{H0}
```

```
by auto
```

```
lemma high-proc_4-s_{H0}:
  high-proc_4 s_{H0}
proof (auto simp: high-proc_4-def)
  fix \sigma \sigma'
  assume Match: match \sigma \Gamma_0
  assume s_{H0} > \sigma \rightsquigarrow Some \ \sigma'
   \sigma' = \sigma \ ("highOut" \mapsto the \ (eval \ \sigma \ (Add \ (Var \ "lowIn") \ (Var \ "highIn"))))
  by (auto elim: exec.cases)
  with Match
 show the (\sigma' "highOut") = the (\sigma "lowIn") + the (\sigma "highIn")
  by (auto simp: match-def add-opt-def split: option.split)
qed
lemma high-proc-no-low-output-change-s<sub>H0</sub>:
  high-proc-no-low-output-change s_{H0}
by (auto simp: high-proc-no-low-output-change-def elim: exec.cases)
The refined specification is obtained by simplification using the definition of s_H.
definition spec_5 :: prog \Rightarrow bool
where spec_5 \ p \equiv vars \ p = vars_0 \land body\text{-}split \ p \ s_{L0} \ s_{H0}
lemma step-5-correct:
  spec_5 p \Longrightarrow spec_4 p
unfolding spec_5-def spec_4-def
by (metis\ wfs-s_{H0}\ high-proc_4-s_{H0}\ high-proc-no-low-output-change-s_{H0})
```

3.4.6 Step 6

 $spec_5$, which defines the variables and the body, is refined to characterize a unique program in explicit syntactic form.

```
abbreviation p_0 :: prog

where p_0 \equiv \{vars = vars_0, body = Seq \ s_{L0} \ s_{H0}\}

definition spec_6 :: prog \Rightarrow bool

where spec_6 \ p \equiv p = p_0

lemma step\text{-}6\text{-}correct:

spec_6 \ p \Longrightarrow spec_5 \ p

by (auto \ simp: spec_6\text{-}def \ spec_5\text{-}def \ body\text{-}split\text{-}def})
```

The program satisfies $spec_0$ by construction. The program witnesses the consistency of the requirements, i.e. the fact that $spec_0$ is not always false.

```
lemma p_0-sat-spec_0:
  spec_0 p_0
by (metis
step	ext{-}1	ext{-}correct
step\hbox{-} 2\hbox{-} correct
step	ext{-}3	ext{-}correct
step-4-correct
step	ext{-}5	ext{-}correct
step\hbox{-} 6\hbox{-} correct
spec_6-def)
From p_0, the program text
  prog {
     vars {
        lowIn
        lowOut
        highIn
        highOut
     }
     body {
        if (lowIn == 0) {
          randomize lowOut;
        } else {
           lowOut = lowIn + 1;
        highOut = lowIn + highIn;
  }
```

is easily obtained.

Chapter 4

General Remarks

The following remarks apply to pop-refinement in general, beyond the examples in Chapter 2 and Chapter 3.

4.1 Program-Level Requirements

By predicating directly over programs, a pop-refinement specification (like $spec_0$ in Section 2.2 and Section 3.3) can express program-level requirements that are defined in terms of the vocabulary of the target language, e.g. constraints on memory footprint (important for embedded software), restrictions on calls to system libraries to avoid or limit information leaks (important for security), conformance to coding standards (important for certain certifications), and use or provision of interfaces (important for integration with existing code). Simple examples are wfp p in Section 2.2 and Section 3.3, para p = ["x", "y"] in Section 2.2, and p in Section 3.3.

4.2 Non-Functional Requirements

Besides functional requirements, a pop-refinement specification can express non-functional requirements, e.g. constraints on computational complexity, timing, power consumption, etc. A simple example is $costp\ p \le 3$ in Section 2.2.

¹In order to express these requirements, the formalized semantics of the target language must suitably include non-functional aspects, as in the simple model in Section 2.1.4.

4.3 Links with High-Level Requirements

A pop-refinement specification can explicate links between high-level requirements and target programs.

For example, $\forall x \ y$. exec $p \ [x, \ y] = Some \ (f \ x \ y)$ in $spec_0$ in Section 2.2 links the high-level functional requirement expressed by f to the target program p.²

As another example, a function $sort: nat\ list \Rightarrow nat\ list$, defined to map each list of natural numbers to its sorted permutation, expresses a high-level functional requirement that can be realized in different ways. An option is a procedure that destructively sorts an array in place. Another option is a procedure that returns a newly created sorted linked list from a linked list passed as argument and left unmodified. A pop-refinement specification can pin down the choice, which matters to external code that uses the procedure.

As a third example, a high-level model of a video game or physical simulator could use real numbers and differential equations. A pop-refinement specification could state required bounds on how the idealized model is approximated by an implementation that uses floating point numbers and difference equations.

Different pop-refinement specifications could use the same high-level requirements to constrain programs in different target languages or in different ways, as in the *sort* example above. As another example, the high-level behavior of an operating system could be described by a state transition system that abstractly models internal states and system calls; the same state transition system could be used in a pop-refinement specification of a Haskell simulator that runs on a desktop, as well as in a pop-refinement specification of a C/Assembly implementation that runs on a specific hardware platform.

4.4 Non-Determinism and Under-Specification

The interaction of refinement with non-determinism and under-specification is delicate in general. The one-to-many associations of a relational specification (e.g. a state transition system where the next-state relation may associate multiple new states to each old state) could be interpreted as non-determinism (i.e. different outcomes at different times, from the same state) or under-specification (i.e. any outcome is allowed, deterministically or non-deterministically). Hyper-properties like GNI are consistent with the interpretation as non-determinism, because security depends on the ability to yield different outcomes, e.g. generating a nonce in a cryptographic protocol. The popular notion of refinement

 $^{^2}$ Similarly, the functional requirements in Section 3.3 could be expressed abstractly in terms of mappings between low and high inputs and outputs (without reference to program variables and executions) and linked to program variables and executions. But Section 3.3 expresses such functional requirements directly in terms of programs to keep the example (whose focus is on hyperproperties) simpler.

as inclusion of sets of traces (e.g. [1]) is consistent with the interpretation as under-specification, because a refined specification is allowed to reduce the possible outcomes. Thus, hyperproperties are not always preserved by refinement as trace set inclusion [3].

As exemplified in Section 3.3, a pop-refinement specification can explicitly distinguish non-determinism and under-specification. Each pop-refinement step preserves all the hyperproperties expressed or implied by the requirement specification. 3

4.5 Specialized Formalisms

Specialized formalisms (e.g. state machines, temporal logic), shallowly or deeply embedded into the logic of the theorem prover (e.g. [7, 6]), can be used to express some of the requirements of a pop-refinement specification. The logic of the theorem prover provides semantic integration of different specialized formalisms.

4.6 Strict and Non-Strict Refinement Steps

In a pop-refinement step from $spec_i$ to $spec_{i+1}$, the two predicates may be equivalent, i.e. $spec_{i+1} = spec_i$. But the formulation of $spec_{i+1}$ should be "closer" to the implementation than the formulation of $spec_i$. An example is in Section 2.3.1.

When the implication $spec_{i+1} p \Longrightarrow spec_i p$ is strict, potential implementations are eliminated. Since the final predicate of a pop-refinement derivation must characterize a unique program, some refinement steps must be strict—unless the initial predicate $spec_0$ is satisfiable by a unique program, which is unlikely.

A strict refinement step may lead to a blind alley where $spec_{i+1} = \lambda p$. False, which cannot lead to a final predicate that characterizes a unique program. An example is discussed in Section 2.3.4.

4.7 Final Predicate

The predicate that concludes a pop-refinement derivation must have the form $spec_n \ p \equiv p = p_0$, where p_0 is the representation of a program's abstract syntax

³Besides security hyperproperties expressed in terms of non-determinism, pop-refinement can handle more explicit security randomness properties. The formalized semantics of a target language could manipulate probability distributions over values (instead of just values), with random number generation libraries that return known distributions (e.g. uniform), and with language operators that transform distributions. A pop-refinement specification could include randomness requirements on program outcomes expressed in terms of distributions, and each pop-refinement step would preserve such requirements.

in the theorem prover, as in Section 2.3.7 and Section 3.4.6. This form guarantees that the predicate characterizes exactly one program and that the program is explicitly determined. p_0 witnesses the consistency of the requirements, i.e. the fact that $spec_0$ is not always false; inconsistent requirements cannot lead to a predicate of this form.

A predicate of the form $spec_i \equiv p = p_0 \land \Phi$ p may not characterize a unique program: if Φ p_0 is false, $spec_i$ is always false. To conclude the derivation, Φ p_0 must be proved. But it may be easier to prove the constraints expressed by Φ as p_0 is constructed in the derivation. For example, deriving a program from $spec_0$ in Section 2.2 based on the functional constraint and ignoring the cost constraint would lead to a predicate $spec_i \equiv p = p_0 \land costp \ p \leq 3$, where $costp \ p_0 \leq 3$ must be proved to conclude the derivation; instead, the derivation in Section 2.3 proves the cost constraint as p_0 is constructed. Taking all constraints into account at each stage of the derivation can help choose the next refinement step and reduce the chance of blind alleys (cf. Section 2.3.4).

The final predicate $spec_n$ expresses a purely syntactic requirement, while the initial predicate $spec_0$ usually includes semantic requirements. A pop-refinement derivation progressively turns semantic requirements into syntactic requirements. This may involve rephrasing functional requirements to use only operations supported by the target language (e.g. lemma f-rephrased in Section 2.3.4), obtaining shallowly embedded program fragments, and turning them into their deeply embedded counterparts (e.g. Section 2.3.5 and Section 2.3.6).

4.8 Proof Coverage

In a chain of predicate inclusions as in Section 2.3 and Section 3.4, the proofs checked by the theorem prover encompass the range from the specified requirements to the implementation code. No separate code generator is needed to turn low-level specifications into code: pop-refinement folds code generation into the refinement sequence, providing fine-grained control on the implementation code.

A purely syntactic pretty-printer is needed to turn program abstract syntax, as in Section 2.3.7 and Section 3.4.6, to concrete syntax. This pretty-printer can be eliminated by formalizing in the theorem prover the concrete syntax of the target language and its relation to the abstract syntax, and by defining the $spec_i$ predicates over program concrete syntax—thus, folding pretty-printing into the refinement sequence.

 $^{^4}$ In Section 3.4, program fragments are introduced directly, without going through shallow embeddings.

4.9 Generality and Flexibility

Inclusion of predicates over programs is a general and flexible notion of refinement. More specialized notions of refinement (e.g. [8, 14]) can be used for any auxiliary types, functions, etc. out of which the $spec_i$ predicates may be constructed, as long as the top-level implication $spec_{i+1}$ $p \Longrightarrow spec_i$ p holds at every step.

Chapter 5

Related Work

In existing approaches to stepwise refinement (e.g. [2, 17, 9, 15]), specifications express requirements less directly than pop-refinement: a specification implicitly characterizes its possible implementations as the set of programs that can be derived from the specification via refinement (and code generation). This is a more restrictive way to characterize a set of programs than defining a predicate over deeply embedded programs in a theorem prover's general-purpose logic (as in pop-refinement).

This restrictiveness precludes some of the abilities discussed in Chapter 4, e.g. the ability to express, and guarantee through refinement, certain program-level requirements like constraints on memory footprint. A derivation may be steered to produce a program that satisfies desired requirements not expressed by the specification, but the derivation or program must be examined in order to assess that, instead of just examining the specification and letting the theorem prover automatically check the sequence of refinement steps (as with pop-refinement). Existing refinement approaches could be extended to handle additional kinds of requirements (e.g. non-functional), but for pop-refinement no theorem prover extensions are necessary.

In existing refinement approaches, each refinement step yields a new specification that characterizes a (strict or non-strict) subset of the implementations characterized by the old specification, analogously to pop-refinement. However, the restrictiveness explained above, together with any inherent constraints imposed by the refinement relation over specifications, limits the choice of the subset, providing less fine-grained control than pop-refinement.

In existing refinement approaches, the "indirection" between a specification and its set of implementations may create a disconnect between properties of a specification and properties of its implementations. For example, along the lines discussed in Section 4.4, a relational specification may satisfy a hyperproperty but some of its implementations may not, because the refinement relation may reduce the possible behaviors. Since a pop-refinement specification directly

makes statements about the possible implementations of the requirements, this kind of disconnect is avoided.

Chapter 6

Future Work

6.1 Populating the Framework

Pop-refinement provides a framework, which must be populated with re-usable concepts, methodologies, and theorem prover libraries for full fruition. The simple examples in Chapter 2 and Chapter 3, and the discussion in Chapter 4, suggests a few initial ideas. Working out examples of increasing complexity should suggest more ideas.

6.2 Automated Transformations

A pop-refinement step from $spec_i$ can be performed manually, by writing down $spec_{i+1}$ and proving $spec_{i+1}$ $p \Longrightarrow spec_i$ p. It is sometimes possible to generate $spec_{i+1}$ from $spec_i$, along with a proof of $spec_{i+1}$ $p \Longrightarrow spec_i$ p, using automated transformation techniques like term rewriting, application of algorithmic templates, and term construction by witness finding, e.g. [16, 10]. Automated transformations may require parameters to be provided and applicability conditions to be proved, but should generally save effort and make derivations more robust against changes in requirement specifications. Extending existing theorem provers with automated transformation capabilities would be advantageous for pop-refinement.

6.3 Other Kinds of Design Objects

It has been suggested [13] that pop-refinement could be used to develop other kinds of design objects than programs, e.g. protocols, digital circuits, and hybrid systems. Perhaps pop-refinement could be used to develop engines, cars,

buildings, etc. So long as these design objects can be described by languages amenable to formalization, pop-refinement should be applicable.

Bibliography

- [1] Martín Abadi and Leslie Lamport. The existence of refinement mappings. Journal of Theoretical Computer Science, 82(2):253–284, 1991.
- [2] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
- [3] Michael Clarkson and Fred Schneider. Hyperproperties. *Journal of Computer Security*, 18(6):1157–1210, 2010.
- [4] Edsger W. Dijkstra. A constructive approach to the problem of program correctness. *BIT*, 8(3):174–186, 1968.
- [5] Joseph Goguen and José Meseguer. Security policies and security models. In *Proc. IEEE Symposium on Security and Privacy*, pages 11–20, 1982.
- [6] Gudmund Grov and Stephan Merz. A definitional encoding of TLA* in Isabelle/HOL. Archive of Formal Proofs, 2011. http://afp.sf.net/entries/TLA.shtml, Formal proof development.
- [7] Steffen Helke and Florian Kammüller. Formalizing Statecharts using hierarchical automata. *Archive of Formal Proofs*, 2010. http://afp.sf.net/entries/Statecharts.shtml, Formal proof development.
- [8] C. A. R. Hoare. Proof of correctness of data representations. *Acta Informatica*, 1(4):271–281, 1972.
- [9] Cliff Jones. Systematic Software Development using VDM. Prentice Hall, second edition, 1990.
- [10] Kestrel Institute. Specware. http://www.specware.org.
- [11] Daryl McCullough. Specifications for multi-level security and a hook-up property. In *Proc. IEEE Symposium on Security and Privacy*, pages 161–166, 1987.
- [12] John McLean. A general theory of composition for a class of "possibilistic" properties. *IEEE Transactions on Software Engineering*, 22(1):53–67, 1996.
- [13] Lambert Meertens. Private communication, 2012.

- [14] Robin Milner. An algebraic definition of simulation between programs. Technical Report CS-205, Stanford University, 1971.
- [15] Carroll Morgan. *Programming from Specifications*. Prentice Hall, second edition, 1998.
- [16] Douglas R. Smith. Mechanizing the development of software. In Manfred Broy, editor, *Calculational System Design, Proc. Marktoberdorf Summer School.* IOS Press, 1999.
- [17] J. M. Spivey. *The Z Notation: A Reference Manual.* Prentice Hall, second edition, 1992.
- [18] Niklaus Wirth. Program development by stepwise refinement. Communications of the ACM, 14(4):221–227, 1971.