A Formalism for the Synthesis of Efficient Controllers for Discrete Event Systems

Antonio Camurri and Alessandro Coglio
DIST - Dipartimento di Informatica Sistemistica e Telematica
Università di Genova
Via Opera Pia 13, I-16145 Genova, Italy
\{music, tokamak\}@dist.unige.it

Abstract

We propose a formalism for the synthesis of "functions", called computation boxes (C-boxes), which possess memory: arguments are put into them and results are gotten from them, avoiding unnecessary computations and possibly using previously calculated intermediate results. C-boxes may be "functionally" composed in graph-like structures, thus allowing modularity and reusability. Different languages may be used to implement computations. C-boxes may be externally specified by means of purely functional specifications called extended functions (E-functions), without bothering about their internal structure. These characteristics make C-boxes particularly well-suited to be used as a software engineering formalism to synthesize efficient controllers for Discrete Event Systems in a clear and modular way.

I. INTRODUCTION

In this paper, a Discrete Event System (DES) is a triple $S=\langle X, E, T\rangle$, where X is a set of states, E is a set of events, and $T \in\left[X \times E \rightarrow_{p} X\right]$ is a transition function $\left(\left[X \times E \rightarrow_{p} X\right]\right.$ is the set of all partial functions from $X \times E$ to X). For example, Petri Nets [1] and Colored Petri Nets [2] are DESs, with markings being states, transition firings being events, and firing rules defining transition functions. DESs, in particular (Colored) Petri Nets, are widely used in the automated manufacturing field, as discrete event controllers for plants [3].

In this paper, a controller for a DES $S=\langle X, E, T\rangle$ is a function $C \in\left[X \rightarrow 2^{E}\right]\left(2^{E}\right.$ is the set of all subsets of E; [$X \rightarrow 2^{E}$] is the set of all functions from X to 2^{E}): for each $x \in X$, controller C selects the subset of all events e enabled in state x (i.e. such that $T(x, e)$ is defined) which belong to $C(x)$; more precisely, DES S and controller C together define a closed-loop DES $S^{\prime}=\left\langle X, E, T^{\prime}\right\rangle$ such that for each state x and event $e, T(x, e)$ is defined iff $T(x, e)$ is defined and $e \in C(x)$, and in that case $T(x, e)=T(x, e)$. In other words, controller C constrains the behavior of S by allowing only some events to occur in each state. This approach to the control of DESs is slightly different from others found in literature: in [4] a supervisor (i.e. controller) is defined as a function mapping a string of events generated by the DES to a subset of E; our approach is motivated below.

It is sometimes useful to design a complex DES $S=\langle X, E, T\rangle$ in terms of another DES $S_{0}=\left\langle X, E, T_{0}\right\rangle$ and a controller $C \in\left[X \rightarrow 2^{E}\right]$ for S_{0}, where S is the closed-loop DES defined by S_{0} and C. For example, consider the design
of a Colored Petri Net as discrete event controller for a large plant where uses of resources (machines, robots, etc.) by productive processes interact in complex ways, thus being subject to many potential deadlocks. In order to avoid such deadlocks, resources must be given to productive processes (e.g. put a part into a machine) according to the state of many other resources (e.g. which productive processes are holding them): so, a deadlock-free Net would have lots of arcs connecting places and transitions for the sole purpose of checking the states of some resources, thus making unclear real uses of resources by productive processes. It might be easier and clearer to design a non-deadlock-free Net which only deals with real uses of resources, and then constrain the behavior of the Net to avoid deadlocks by means of a controller mapping each marking into a set of transition firings which do not lead to deadlocked markings.

The implementation of a controller for a DES would reasonably consist in a functional procedure taking a state as argument and returning a set of events as result; when an event occurs and state changes the procedure is called upon the new state, and this is repeated over and over again. It is very often the case that the state of a DES can be naturally partitioned into components (e.g. the components of the marking of a (Colored) Petri Net are the markings of the individual places), and that when an event occurs only a few components change, the others remaining unaltered (e.g. when a transition fires in a (Colored) Petri Net, only the places connected to that transition change their markings): so, after an event occurs, many of the computations executed upon the previous state are equally repeated upon the new state, thus wasting time.

In this paper we propose a formalism for the synthesis of "functions", called computation boxes (C-boxes for short), which possess memory: arguments are put into C-boxes (i.e. written into memory) and results are gotten from C-boxes (i.e. read from memory). C-boxes write results into their memory by reading arguments from their memory and executing computations upon them. When getting results, computations which are unnecessary to determine such results may be avoided; furthermore, since memory may also contain intermediate results, when getting results after changing only some arguments, some computations may be avoided by using previously calculated intermediate results which are still valid. C-boxes may be "functionally" composed together in graph-like structures to build more
complex C-boxes, thus allowing modularity and reusability. Computations are specified as generic mathematical functions, so that they may be implemented in any language, thus allowing the use of different languages in a clear way. An extremely important property of C-boxes is that they may be externally specified by means of purely functional specifications called extended functions (E-functions for short): in order to compose C-boxes together or to use them putting arguments and getting results, it is sufficient to know their functional specifications, without bothering about the internal structure.

These characteristics make C-boxes particularly wellsuited to be used as a software engineering formalism to synthesize efficient controllers for DESs in a clear and modular way.

II. OVERVIEW OF THE FORMALISM

Since a complete formal presentation of our formalism would make this paper exceedingly long, we only give an overview of it by means of some simple examples; for details, see [5].

Firstly, a type is a non-empty set of objects not including \perp ("nil"). In our simple examples we use the following types: $z=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of integers; $\mathcal{B}=\{T, F\}$, the set of booleans; $\mathcal{K E Y}$, a set of keys (identifiers, names, or whatever); $\mathfrak{T A B L E}$, the set of tables, where a table is a finite set of entries $\langle k e y$, val $\rangle \in \mathcal{X E} \mathcal{Y} \times \mathcal{Z}$ such that no two distinct entries in the table have the same key.

Given types $\tau_{1}, \ldots, \tau_{n}(n \geq 1)$ and $\tau^{1}, \ldots, \tau^{m}(m \geq 1)$, a computation box (C-box for short) from $\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ to $\left\langle\tau^{1}, \ldots, \tau^{m}\right\rangle$ is a level-u computation box (C^{u}-box for short) from $\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ to $\left\langle\tau^{1}, \ldots, \tau^{m}\right\rangle$, for some $u \in \mathcal{N}(\mathcal{N}$ is the set of natural numbers).

A. Level-0 Computation Boxes

Fig. 1, Fig. 2 and Fig. 3 respectively depict C^{0}-boxes search from $\langle\mathcal{T A B L E}, \mathcal{K E Y}\rangle$ to $\langle\mathcal{B}, Z\rangle$, if from $\langle\mathcal{B}, Z, Z\rangle$ to Z and plus from $\langle z, Z\rangle$ to Z. A C^{0}-box from $\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ to $\left\langle\tau^{1}, \ldots, \tau^{m}\right\rangle$ basically consists of n argument memories (A-mems for short), m result memories (R-mems for short) and a tree. Each A-mem or R-mem (represented as a rectangle) contains an object of the associated type or the special value \perp. Each node of the tree is labeled by one of $\operatorname{Arg}_{1}, \ldots$, Arg $_{n}$, Res $_{1}, \ldots$, Res $_{m}$; each branch connecting two nodes is labeled by a constraint, i.e. a subset of $\tau_{j 1} \times \ldots \times \tau_{j,}$, where $\operatorname{Arg}_{j}, \ldots, \operatorname{Arg}_{j_{q}}$ are the labels among $\operatorname{Arg}_{1}, \ldots, \operatorname{Arg}_{n}$ of the nodes preceding the branch, in that order; each node labeled by a Res_{i} is also labeled by a calculation, i.e. a mathematical function from $\tau_{j \mathrm{i}} \times \ldots \times \tau_{j_{q}}$ to $\tau^{i} \cup\{\perp\}$, where $\operatorname{Arg}_{j}, \ldots, \operatorname{Arg}_{j_{q}}$ are the labels among $\operatorname{Arg}_{1}, \ldots, \operatorname{Arg}_{n}$ of the nodes preceding the node, in that order. In Fig. 1 const F is the function from $\mathcal{T A B L E}$ to $\mathcal{B} \cup\{\perp\}$ such that const $F(t b l)=F$, is-present? is

Fig. $1 \mathrm{C}^{0}$-box search.
the function from $\mathcal{T A B L E} \times \mathcal{X E} \mathcal{Y}$ to $\mathcal{B} \cup\{\perp\}$ such that is-present? $(t b l$, key $)=$ if $\exists\langle k e y, v a l\rangle \in t b l$ then T else F, assoc-val is the function from $\mathcal{T A B L E} \times \mathcal{K E} \mathcal{Y}$ to $Z \cup\{\perp\}$ such that assoc-val(tbl,key) $=$ if $\exists\langle k e y, v a l\rangle \in t b l$ then val else \perp; in Fig. 2 copy-int is the function from $\mathcal{B} \times Z$ to Z such that copy-int $(b, v a l)=v a l$; in Fig. 3 add is the function from $Z \times Z$ to Z such that $a d d\left(v a l_{1}, v a l_{2}\right)=v a l_{1}+v a l_{2}$.
C^{0}-boxes can be executed, as we now explain by means of search as an example (see Fig. 1). Execution starts at the root of the tree: label Arg_{1} means that the first argument (i.e. the object in the first A-mem) must be read. If it is \perp execution stops (\perp represents a "missing value"), and can then be resumed (see next subsection); otherwise, let $t b l$ be the table contained there. There are two branches from the root, labeled by constraints $\{\varnothing\}$ and $\mathcal{T A B L E}$, respectively: execution goes on at the leftmost node such that the constraint labeling the corresponding branch contains $t b l$, if any. Thus, if $t b l=\varnothing$ execution goes on at the node labeled by Res ${ }_{1}$ and calculation constF: Res ${ }_{1}$ means that the first result must be written into the first R -mem, and const F means that such result is const $F(t b l)$ (i.e. F); since there are no branches from this node, execution terminates. If otherwise $t b l \neq \varnothing$, execution goes on at the node labeled by Arg_{2}, which means that the second argument (i.e. the object contained in the second A-mem) must be read. If it is \perp execution stops and can then be resumed; otherwise, let key be the key contained there. There is one branch from this node, labeled by constraint $\mathcal{T A B L E} \times$ KEEY: the leftmost node such that the constraint labeling the corresponding branch contains〈tbl,key> is thus the node labeled by Res_{1} and calculation is-present?, so execution goes on there. Res ${ }_{1}$ and is-present? mean that is-present? (tbl,key) must be written into the first R -mem. There is one branch from this node, labeled by constraint $\{\langle t b l$, key $\rangle \in \mathscr{T A B L E} \times \mathcal{K E} \mathcal{Y} \mid \exists\langle k e y$, val $\rangle \in t b l\}$: if $\forall\langle k e y, v a l\rangle \notin t b l$ then execution terminates because there is no node such that the constraint labeling the corresponding branch contains $\langle t b l, k e y\rangle$. Otherwise execution goes on at the

node labeled by Res_{2} and calculation assoc-val, which mean that assoc-val(tbl,key) (which is not \perp) must be written into the second R-mem. Since there are no branches from this node, execution terminates.

Analogously, the execution of if (see Fig. 2) consists in reading the first argument and writing the second (third) argument as result if the first argument is $T(F)$, and the execution of plus (see Fig. 3) consists in reading the first and second arguments and writing their sum as result; in both cases, if a \perp argument is read execution stops and can then be resumed.

So, execution of a C^{0}-box moves down the tree along the leftmost path allowed by constraints: arguments are read from memory, and results are written into memory as specified by calculations; when a \perp argument is read execution stops and can then be resumed; furthermore, when a calculation yields a \perp result, execution stops with an error (anyway search is such that no error ever occurs). Calculations and tests for membership to constraints can be implemented in any language; the fact that a calculation gives \perp for some arguments represents the fact that its implementation does not expect such arguments (e.g. for efficiency reasons), and this is why in our formalism execution stops with an error when a calculation yields a \perp result.

Basically, two operations can be performed over C^{0}-boxes. One consists in putting an argument into memory: a $j \in\{1, \ldots, n\}$ and a $v \in \tau_{j}$ are specified, and v is written into A-mem j, at the same time writing \perp into all R -mems (because previous results may change now). The other consists in getting a result from memory: an $i \in\{1, \ldots, m\}$ is specified, and if a $v \in \tau^{i}$ is in R-mem i such v is returned, otherwise the C^{0}-box is executed; execution can stop with an error, or stop because a \perp argument has been read, or terminate; in the last case, if after termination R-mem i still contains \perp an error occurs, otherwise the $v \in \tau^{i}$ contained there is returned.

We can thus put arguments into a C^{0}-box and get the corresponding results, and it is important that during execution the C^{0}-box sometimes avoids reading arguments
which are irrelevant for determining results (e.g. search avoids reading the key if the table is empty) and avoids performing unnecessary computations (e.g. search avoids the computations of is-present? and assoc-val if the table is empty).

B. Higher-Level Computation Boxes

Fig. 4 depicts C^{1}-box addkeys from $\langle\mathcal{T A B L E}, \mathcal{K E Y}, \mathcal{X E} \mathcal{Y}\rangle$ to Z. A C^{u}-box from $\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ to $\left\langle\tau^{1}, \ldots, \tau^{m}\right\rangle$ with $u \geq 1$ basically consists in a directed acyclic graph with memory nodes (represented as circles), computation nodes (represented as rectangles), and arcs connecting them; each arc connects nodes of different kinds; each memory node has at most one incoming arc. Each memory node is associated a type and contains an object of that type or the special value \perp; n distinguished memory nodes with no incoming arcs have types $\tau_{1}, \ldots, \tau_{n}$ and are called argument memories (A-mems for short); m distinguished memory nodes with no outgoing arcs have types $\tau^{1}, \ldots, \tau^{m}$ and are called result memories (R-mems for short); zero or more distinguished memory nodes (represented as thick circles) always contain the same non- \perp values (indicated inside thick circles) of the associated types and are called constant nodes. Each computation node contains a C-box of level less than u (indicated inside rectangles) whose argument and result types match with the types associated to connected memory nodes in the obvious way. The numbers by non-constant memory nodes are for reference purposes only.
C^{u}-boxes with $u \geq 1$ can be executed, as we now explain by means of addkeys as an example (see Fig. 4), which "maps" a table and two keys to the sum of the integers identified by the keys in the table (if any of the keys is not present in the table, we consider 0 the value identified by that key). Suppose that nodes 1,2 and 3 respectively contain a table $t b l$ and two keys $k e y_{1}$ and $k e y_{2}$, and that all other nodes contain \perp; the contents of A-mems and R-mems of the five nested C^{0}-boxes are the same of the corresponding memory nodes, as obvious (e.g. the second A-mem of the rightmost search contains $k e y_{2}$). Since node 10 has an incoming arc from the computation node containing plus, the execution of addkeys starts by activating the execution of plus, which stops when

Fig. $3 \mathrm{C}^{0}$-box plus.
\perp is read as first argument. Since node 8 has an incoming arc from the leftmost computation node containing if, the execution of such if is activated, which stops when \perp is read as first argument. Since node 4 has an incoming arc from the leftmost computation node containing search, the execution of such search is activated, which writes a boolean b_{1} into node 4 (and also into the first A-mem of the leftmost if and into the first R-mem of search itself) and possibly an integer val_{1} into node 5, then terminates. At this point, the execution of if is resumed: the first argument is read again, but now it is $b_{1} \neq \perp$: if $b_{1}=T$ the second argument $v a l_{1}$ is read and written into node 8 ; if $b_{1}=F$ the third argument is read (which is always 0) and written into node 8 . In both cases, as the execution of if terminates the execution of plus is resumed, which now reads \perp as second argument; so, similarly to before the execution of the rightmost if and then of the rightmost search are activated, and at the end the execution of plus is resumed. The second argument is read again, and now it is an integer; the sum of the two integers in nodes 8 and 9 is written into node 10 , and the execution of addkeys terminates.

So, execution of a C^{u}-box with $u \geq 1$ consists in activating executions of nested C-boxes: when one of them stops because a \perp argument has been read, another one is activated as determined by node connections, in a sort of backward chaining; if one of them stops with an error, the whole C^{u}-box stops with an error; furthermore, if a \perp argument is read from an A -mem of the C^{u}-box, the whole C^{u}-box stops its execution (e.g. if the first A-mem of addkeys contains \perp the execution of addkeys stops), which can then be resumed. Thus, execution of C^{0}-boxes and execution of C^{u}-boxes with $u \geq 1$ are "externally" the same.

Basically, two operations can be performed over C^{u}-boxes with $u \geq 1$. One consists in putting an argument into memory: a $j \in\{1, \ldots, n\}$ and a $v \in \tau_{j}$ are specified, and v is written into argument memory j, at the same time writing \perp into all those memory nodes whose content may depend on v (e.g. if we put a key $k e y_{2}{ }^{\prime} \neq k e y_{2}$ as third argument of addkeys, a \perp is written into nodes $6,7,9$ and 10 , while the

Fig. $4 \mathrm{C}^{1}$-box addkeys.
other nodes retain their contents). The other consists in getting a result from memory: an $i \in\{1, \ldots, m\}$ is specified, and if a $v \in \tau^{i}$ is in R-mem i such v is returned, otherwise the C^{u}-box is executed; unlike addkeys, in general a C^{u}-box may have more than one R-mem, whose incoming arcs are from distinct computation nodes, so i determines which nested C-box must be executed first. Execution of the C^{u}-box can stop with an error, or stop because a \perp argument has been read, or terminate; in the last case, if after termination R-mem i still contains \perp an error occurs, otherwise the $v \in \tau^{i}$ contained there is returned.

We can thus put arguments into a C^{u}-box with $u \geq 1$ and get the corresponding results, but it is important that during execution the C^{u}-box sometimes avoids reading arguments which are irrelevant for determining results (e.g. addkeys avoids reading the two keys if the table is empty) and avoids performing unnecessary computations (e.g. addkeys avoids performing the computations of is-present? and assoc-val in the two search's if the table is empty). Furthermore, suppose that, after the execution of addkeys explained above, a key $k e y_{2}{ }^{\prime} \neq k e y_{2}$ is put as third argument, and that we get the result: since an integer is still in node 8 , the leftmost if and leftmost search are not executed; in general, during the execution of a C^{u}-box with $u \geq 1$ some computations may be avoided by using previously calculated intermediate results which are still valid.

C. Extended Functions

Given types $\tau_{1}, \ldots, \tau_{n}(n \geq 1)$ and $\tau^{1}, \ldots, \tau^{m}(m \geq 1)$, an extended function (E-function for short) from $\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ to $\left\langle\tau^{1}, \ldots, \tau^{m}\right\rangle$ is basically a function from $\tau_{1} \cup\{\perp\} \times \ldots \times \tau_{n} \cup\{\perp\}$ to $\tau^{1} \cup\{\perp\} \times \ldots \times \tau^{m} \cup\{\perp\}$. Each C-box from $\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ to $\left\langle\tau^{1}, \ldots, \tau^{m}\right\rangle$ is associated an E-function from $\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ to $\left\langle\tau^{1}, \ldots, \tau^{m}\right\rangle$ which constitutes the specification of the C-box, because it completely "characterizes" the C-box, as formalized by some theorems and as we now explain by means of examples.
C^{0}-box search is associated E-function Search, which is such that: Search $(t b l, k e y)=\langle F, \perp\rangle$ if key is not in $t b l$, which means that after we put arguments $t b l$ and key, with key not in $t b l$, into search, we can then get F as first result without errors, but we cannot get the second result (because an error would occur); Search(tbl,key) $=\langle T, v a l\rangle$ if $\langle k e y, v a l\rangle \in t b l$, which means that after we put arguments $t b l$ and key, with $\langle k e y, v a l\rangle \in t b l$, into search, we can then get both T and val as first and second result without errors; $\operatorname{Search}(\varnothing, \perp)=$ $\langle F, \perp\rangle$, which means that after we put \varnothing as first argument into search we can then get F as first result without errors and without the second argument being read by search (i.e. the second argument may also be \perp, but the execution does not stop because search does not even attempt to read it); Search $(\perp$, key $)=\langle\perp, \perp\rangle$, which means that it is not possible to get any result without the first argument being read. The
fact that the first result of Search is T iff the second one is non－\perp means that，after we get the first result from search， we can then get the second one without errors iff the first one was T（and search does not execute again，because it has already written the second result into memory when the first one was gotten）．
C^{0}－box if is associated E－function If，which is such that： $I f\left(T, v a l_{1}, \perp\right)=v a l_{1}\left(I f\left(F, \perp, v a l_{2}\right)=v a l_{2}\right)$ ，which means that after we put $T(F)$ and val $_{1}\left(\mathrm{val}_{2}\right)$ into the first and second （third）A－mems of if we can then get $\mathrm{val}_{1}\left(\mathrm{val}_{2}\right)$ as result without errors and without the third（second）argument being read；$I f\left(\perp, v a l_{1}, v a l_{2}\right)=\perp$ ，which means that the first argument is always read by if，and it is not possible to get the result without a boolean being present there．
C^{0}－box plus is associated E－function Plus，which is such that： $\operatorname{Plus}\left(v a l_{1}, v a l_{2}\right)=v a l_{1}+v a l_{2}$ ，which means that after we put two integers as arguments into plus we can then get their sum as result without errors； $\operatorname{Plus}\left(\perp\right.$, val $\left._{2}\right)=\operatorname{Plus}\left(\right.$ val $\left._{1}, \perp\right)=$ \perp ，which means that plus always reads both its argument．
C^{1}－box addkeys is associated E－function Addkeys，which is such that：Addkeys $\left(t b l\right.$, key $\left._{1}, k e y_{2}\right)=v a l_{1}+v a l_{2}$ ，where for $i=1,2 \mathrm{val}_{i}$ is the integer identified by $k e y_{i}$ in $t b l$ or 0 if $k e y_{i}$ is not in $t b l$ ，which means that after we put arguments $t b l, k e y_{1}$ and $k e y_{2}$ into addkeys we can then get the sum of the integers identified by $k e y_{1}$ and $k e y_{2}$ in $t b l$（ 0 if not present）as result without errors； $\operatorname{Addkeys}(\varnothing, \perp, \perp)=0$ ，which means that after we put \varnothing into the first argument memory of addkeys we can then get 0 as result without errors and without the other two arguments being read； Addkeys $\left(\perp\right.$, key $\left.y_{1}, k e y_{2}\right)=\perp$ ，which means that it is not possible to get the result without the first argument being read．

So，in order to use a C－box，putting arguments and getting results，or nesting it into a higher－level one，we only need to know its associated E－function（which constitutes the specification），without bothering about its internal structure （which constitutes the implementation）．For example，in order to use search properly we only need to know Search， without bothering about the tree in Fig．1，its constraints and calculations．We can thus view a C－box as shown in Fig．5．A very important point is that the E－function associated to a C^{u}－box with $u \geq 1$ is obtained by functionally composing the E－functions associated to nested C－boxes according to the graph structure of the C^{u}－box in the obvious way，thus allowing transparent local implementation changes．

III．AN EXAMPLE IN AUTOMATED MANUFACTURING

We now present a simple but representative example of use of C－boxes in automated manufacturing．

Consider the plant sketched in Fig．6．Raw products（all equal to each other）from storage RP（which is never empty） are operated by machines M_{1}, M_{2} and M_{3}（each machine contains at most one product at once，and operates it in a null

Fig． 5 C－box $C B$ whose associated E－function is $e f$ ．
time）according to productive processes $\mathrm{PP}_{1}, \mathrm{PP}_{2}$ and PP_{3} as indicated in Fig．6，and the corresponding three kinds of finished products go into storage FP（which is never full）； products are moved from place to place by robot R in a null time．

The discrete event control of this plant may be realized by means of DES $S=\langle X, E, T\rangle$ defined as follows．We have

$$
X=(\mathcal{M S} \times \mathcal{P} \mathcal{P}) \times(\mathcal{M S} \times \mathcal{P} \mathcal{P}) \times(\mathcal{M S} \times \mathcal{P} \mathcal{P})
$$

where $\mathcal{M S}=\{e m p t y$, ready，finished $\}$（machine states）and $P Q=\left\{\mathrm{PP}_{1}, \mathrm{PP}_{2}, \mathrm{PP}_{3}\right.$, none $\}$ ，i．e．states are triples of pairs， each pair referring to a machine M_{i} ：if no product is present in M_{i} the pair is＜empty，none〉；otherwise the pair is〈ready， PP_{j} 〉 or 〈finished， PP_{j} 〉 if（respectively）the product has still to be operated or has already been operated by M_{i} ， and PP_{j} is the productive process of the product．We have
$E=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{PP}_{1}, \mathrm{PP}_{2}, \mathrm{PP}_{3}, \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}\right\}$,
each event corresponding to a command to the physical controllers of $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$ or R：event O_{i} causes M_{i} to operate the product present in it，event PP_{i} causes R to move a raw product from RP to the first machine of process PP_{i} ，and event M_{i} causes R to move the product in M_{i} to its next destination（another machine or FP）．For each state $x=\left\langle\left\langle m s_{1}, p p_{1}\right\rangle,\left\langle m s_{2}, p p_{2}\right\rangle,\left\langle m s_{3}, p p_{3}\right\rangle\right\rangle$ we have：
－$T\left(x, \mathrm{O}_{i}\right)=x^{\prime}$ is defined iff $m s_{i}=$ ready，and in that case x^{\prime} is x with $m s_{i}$ changed to finished；
－$T\left(x, \mathrm{PP}_{i}\right)=x^{\prime}$ is defined iff $\left\langle m s_{j}, p p_{j}\right\rangle=\langle$ empty，none $\rangle\left(\mathrm{M}_{j}\right.$ being the first machine of PP_{i} ），and in that case x^{\prime} is x with $\left\langle m s_{j}, p p_{j}\right\rangle$ changed to $\left\langle\right.$ ready, $\left.\mathrm{PP}_{i}\right\rangle$ ；
－$T\left(x, \mathrm{M}_{i}\right)=x^{\prime}$ is defined iff one of two cases holds：first case， M_{i} is the last machine of $p p_{i}$ ，and in that case x^{\prime} is x with $\left\langle m s_{i}, p p_{i}\right\rangle$ changed to 〈empty，none〉；second case， $\left\langle m s_{j} ; p_{j}\right\rangle=\langle$ empty，none $\rangle\left(\mathrm{M}_{j}\right.$ being the machine immediately following M_{i} in process $p p_{i}$ ），and in that case x^{\prime} is x with $\left\langle m s_{i}, p p_{i}\right\rangle$ changed to 〈empty，none〉 and $\left\langle m s_{j}, p p_{j}\right\rangle$ changed to $\left\langle\right.$ ready,$\left.p p_{i}\right\rangle$ ．
Such DES S may lead to deadlocks（e．g．no event can take place in state $\left\langle\left\langle\right.\right.$ finished， $\left.\mathrm{PP}_{1}\right\rangle,\left\langle\right.$ finished， $\left.\mathrm{PP}_{3}\right\rangle$ ，（finished， $\left.\left.\mathrm{PP}_{2}\right\rangle\right\rangle$ ）．We may avoid deadlocks by using a controller C for S which maps each state x into the set $C(x)$ of all events e such that state $T(x, e)$ is safe，where a state is safe iff state〈＜empty，none〉，（empty，none〉，（empty，none〉〉 is reachable from it．

Fig． 6 Sketch of the plant．

Fig. 7b C-box machine-events.

Controller C is realized as C-box controller from $\langle\mathcal{M S}, \mathcal{M S}, \mathcal{M S}, \mathscr{P P}, \mathcal{P} P, \mathcal{P P}\rangle$ (i.e. the types of the objects which compose states) to 2^{E}, depicted in Fig. 7a (the A-mems are nodes $1,2,3,4,5$ and 6 ; to improve clarity some memory nodes appear more than once, like node 7); Fig. 7b, 7c and 7d respectively depict C-boxes machine-events from $\left\langle\mathcal{M S}, \mathscr{P P}, \mathcal{P L}, \mathcal{C F G}, 2^{E}, 2^{E}\right\rangle$ to $\left\langle 2^{E}, 2^{E}\right\rangle$, move-event from $\left\langle\mathcal{B}, \mathscr{P} P, \mathcal{P L}, \mathcal{C F G}, 2^{E}\right\rangle$ to 2^{E} and operate-event from $\left\langle\mathcal{M S}, 2^{E}\right\rangle$ to 2^{E}, where $P_{\mathcal{L}}=\left\{\mathrm{RP}, \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{FP}\right\} \quad$ (places) and $C \mathcal{F G}=\left(\left\{\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}\right\}^{*} \cup\{\text { free }\}\right)^{3}$ (configurations, see below; $\left\{M_{1}, M_{2}, M_{3}\right\}^{*}$ is the set of all finite sequences of elements of $\left\{\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}\right\}$).
Memory nodes $9,11,13,14,15,16,8,10,12$ respectively "correspond" to events $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{PP}_{1}, \mathrm{PP}_{2}, \mathrm{PP}_{3}, \mathrm{M}_{1}, \mathrm{M}_{2}$, M_{3} in the following sense: just after getting the result from controller, each of these nodes contains the singleton set of the "corresponding" event (e.g. node 13 contains $\left\{\mathrm{O}_{3}\right\}$) if such event is enabled by C, otherwise it contains \varnothing.
C^{0}-box union reads the arguments and writes their union as result, which is also the result of controller.
C^{0}-box build-config reads the arguments $p p_{1}, p p_{2}$ and $p p_{3}$, and writes result $\left\langle c f g_{1}, c f g_{2}, c f g_{3}\right\rangle$ defined as follows: if $p p_{i}=$ none then $c f g_{i}=$ free, otherwise $c f g_{i}$ is the sequence of all machines which follow M_{i} in process $p p_{i}$ (e.g. $c f g_{3}=\left[\mathrm{M}_{2}, \mathrm{M}_{1}\right]$ if $\left.p p_{3}=\mathrm{PP}_{2}\right)$.

Fig.7c C-box move-event.

Fig.7d C-box operate-event.
C^{0}-boxes finished? and ready? read the argument and write result T if that argument is finished or ready (respectively), F otherwise.
C^{0}-box if is exactly like the one of the previous section, except that it deals with sets of events instead of integers.
C^{0}-box next-place reads the two arguments $p p$ and $p l$, and writes result $p l^{\prime}$ which is the next place after $p l$ where the product of process $p p$ must go (e.g. $p l^{\prime}=\mathrm{FP}$ if $p p=\mathrm{PP}_{1}$ and $p l=\mathrm{M}_{2}$); if $p p=$ none an error occurs (i.e. the calculation specifies a \perp result).
C^{0}-box free? reads the first argument $p l$, and if $p l=\mathrm{FP}$ then result T is written; otherwise, if $p l=\mathrm{M}_{i}$ it reads the
second argument $\left\langle c f g_{1}, c f g_{2}, c f g_{3}\right\rangle$ ，and if $c f g_{i}=$ free then result T is written，otherwise result F is written．
C^{0}－box next－config reads its arguments $c f g, p p$ and $p l$ and writes result $c f g^{\prime}$ which is the configuration obtained by moving the product of process $p p$ from place $p l$ to the next place where it must go；if $p p=$ none or the product cannot be in $p l$ or the next place is a non－empty machine then an error occurs．
C^{0}－box and reads the first argument，and if it is F then it writes result F ；otherwise it reads the second argument，and if it is F then it writes result F ；otherwise it reads the third argument and writes it as result．
C^{0}－box safe？reads the argument $c f g=\left\langle c f g_{1}, c f g_{2}, c f g_{3}\right\rangle$ and writes result T if $c f g$ is safe（i．e．it corresponds to a safe state），result F otherwise．The calculation might be implemented by means of the following self－explaining Prolog program：

```
readcfgcomp (cfg(X,Y,Z),m1,X).
readcfgcomp(cfg(X,Y,Z),m2,Y).
readcfgcomp (cfg(X,Y,Z),m3,Z).
writecfgcomp(cfg(X,Y,Z),m1,W,cfg(W,Y,Z)).
writecfgcomp(cfg(X,Y,Z),m2,W,cfg(X,W,Z)).
writecfgcomp(cfg(X,Y,Z),m3,W,cfg(X,Y,W)).
directlyreachable(C1,C2):-
    readcfgcomp (C1,M,[]),
    writecfgcomp(C1,M,free,C2).
directlyreachable(C1,C2):-
    readcfgcomp(C1,M1, [M2|ML]),
    readcfgcomp (C1,M2,free),
    writecfgcomp (C1,M1,free,C),
    writecfgcomp(C,M2,ML,C2).
reachable(C1,C2):-directlyreachable(C1,C2).
reachable(C1,C2):-directlyreachable(C1,C),
    reachable(C,C2).
```

The above program is executed upon

```
?-reachable(cfg( }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}),cfg(free,free,free)
```

where x_{i} is free if $c f g_{i}=$ free，otherwise it is the Prolog list of $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3$ corresponding to sequence $c f g_{i}$ of $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$ ； result T or F is determined by answer Yes or Failure， respectively．

E－function Controller associated to controller is such that for each state $\left\langle\left\langle m s_{1}, p p_{1}\right\rangle,\left\langle m s_{2}, p p_{2}\right\rangle,\left\langle m s_{3}, p p_{3}\right\rangle\right\rangle$ with $p p_{i}=$ none if $m s_{i}=$ empty，we have that Controller $\left(m s_{1}, m s_{2}, m s_{3}\right.$ ， $p p_{1}, p p_{2}, p p_{3}$ ）is non $-\perp$ and it is the set of all events enabled by C ．Thus，after putting arguments constituting the initial state （i．e．〈〈empty，none〉，〈empty，none〉，（empty，none〉〉）we can repeatedly get the result and change some arguments according to the state transition determined by any event of that result：computations will always terminate without errors，and no deadlock in the plant will ever occur．Note that when for example event O_{3} takes place，we only change the third argument（in node 3），thus when we get the result only the following C^{0}－boxes are executed（in order）：union；if and and inside move－event inside the rightmost machine－events；finished？inside the rightmost machine－events；if and ready？inside operate－event inside the rightmost machine－events．

IV．FUTURE WORK

As the example in the previous section has shown，the characteristics of C－boxes make them particularly well－suited to be used as efficient controllers for DESs．Anyway，we think that C－boxes constitute a general software engineering formalism for the modular synthesis of efficient procedures， which allows the use of different languages in a clear way： thus，it is worth investigating other fields in which C－boxes could be applied．

Another interesting direction for future work is the development of a software system for the synthesis of C－boxes，in which different languages may be used to implement calculations．In principle，the user should define a procedure for each calculation and a procedure for test of membership to each constraint；in practice，it would be better to allow more flexibility（e．g．in C－box search the two results should be produced by one procedure，even if we have two distinct calculations）．Efficiency of synthesized C－boxes could be greatly increased by automatic and user－transparent flattening of C －boxes to C^{1}－boxes，and also of parts of them to C^{0}－boxes（in fact，if we have computation nodes containing very simple and fast C－boxes，it is too costly to read from and write into memory nodes）．It would also be interesting to integrate such software system into existing packages for the synthesis of software systems，such as PETREX［6］．

V．REFERENCES

［1］J．L．Peterson，Petri Net Theory and the Modeling of Systems，Englewood Cliffs，NJ，Prentice Hall； 1981.
［2］K．Jensen，＂Coloured Petri Nets：A High Level Language for System Design and Analysis＂，in G．Rozenberg（ed．），Advances in Petri nets 1990， Lecture Notes in Computer Science，vol．483， Springer－Verlag，1990，pp．342－416．
［3］M．C．Zhou and F．DiCesare，Petri Net Synthesis for Discrete Event Control of Manufacturing Systems， Kluwer Academic Publishers； 1993.
［4］P．J．Ramadge and W．M．Wonham，＂The Control of Discrete Event Systems＂，Proceedings of the IEEE， vol．77，no．1，Jan．1989，pp．81－98．
［5］A．Camurri and A．Coglio，Computation Boxes and Extended Functions，DIST Technical Report，in preparation．
［6］A．Camurri，P．Franchi，M．Vitale，＂Future Directions： Object Oriented High Level Petri Nets for Real－Time Scheduling of FMS＂，in L．F．Pau and J．O．Willums （eds．），Manufacturing Automation at the Crossroads－ Standardization in CIM Software，IOS Press，1993， Chapter 6，pp．57－83．

