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Abstract – We propose a hybrid architecture for the simulation

of plants. Its core is a Petri Net executor based on a new class

of Petri Nets called Extended Simple Colored Petri Nets. The

executor is supervised by an expert system. Our architecture is

very well-suited for the software-engineering development of

plant simulators, as development times and errors can be

dramatically reduced. The validity of our approach has been

demonstrated by means of an implementation that we have

realized as an industrial project for Demag Italimpianti.

I. INTRODUCTION

In this paper we deal with plant simulations aimed at

experimentally obtaining performance measures (e.g.

throughput, waiting times, utilization percentages, etc.) of

plants, also useful to discover bottlenecks, evaluate the

impact of proposed modifications, and so on. While such

performance measures can hardly be computed by analytical

methods, they can be easily obtained by running simulators

for long enough times and having them collect and output all

the interesting data.

Building a simulator in any general-purpose programming

language (e.g. C, C++) is not an easy task. It is necessary to

model flows of materials and parts, concurrency of

operations, synchronization of processes, use of shared

resources, and so on. Furthermore, high-level scheduling

strategies, which depend on the overall state of the plant,

must also be modeled.

In this paper we propose a hybrid architecture for plant

simulators. Its core is a Petri Net executor based on Extended

Simple Colored Petri Nets (ESCP-nets) [1, 2], which models

flows, concurrency, synchronization, resource sharing, etc.

The executor is supervised by an expert system, which

models the high-level scheduling strategies by means of rules

concerning the marking of the ESCP-net. This architecture

is very well-suited for the software-engineering development

of plant simulators: its capability to conveniently model the

most crucial aspects of plant simulation, allows dramatic

reductions of development times and errors.

The validity of our approach has been demonstrated by

means of an implementation of the architecture that we have

realized as an industrial project for Demag Italimpianti, the

largest Italian industry producing plants.

In Section II we describe a real-world plant, namely the

raw material handling area of the steel-plant at Servola-

Trieste (Italy). In Section III we give an overview of the

architecture through the description of a simulator, which we

have realized using our implementation, of the Servola-

Trieste plant. Finally, in Section IV we draw some

conclusions and describe future work.

II. A REAL-WORLD PLANT

Fig. 1 sketches the raw material handling area at Servola-

Trieste. The fossil pool consists of four (heaps of) raw

materials whose codes are CF1, CF2, CF3, CF4. The mineral

pool consists of eight (heaps of) raw materials whose codes

are PEH, PEG, P1, P2, F1, F2, F3, F4. While the blast-

furnace is working, these twelve materials flow at constant

rates from the pools to the blast-furnace. Raw materials are

brought to the pools by means of eight kinds of ships, each of

which carries one, two, or three fixed materials in fixed

quantities. As soon as the quantity of a raw material in the

pools goes below a critical threshold, a fixed ship (carrying

that material) is “called” (unless a ship carrying it is already

coming). Arriving ships are queued in the roadstead, as only

one ship may occupy the berth. When the berth is free, the

first ship in the roadstead is moored, its materials are

unloaded to the pools, and then it is unmoored. If, owing to

ship delays, some raw material runs out, the blast-furnace is

turned off; it is turned on again as soon as the needed

material arrives.

Our simulator of this plant, described in the next section,

is as detailed as an existing simulator of the same plant

developed in Fortran by Demag Italimpianti.
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Fig. 1: A sketch of the Servola-Trieste plant.



III. OVERVIEW OF THE ARCHITECTURE

Fig. 2 shows the overall organization of our architecture.

The simulation is run by the master, which cyclically calls

the other three modules, cycles being delimited by evenly

spaced instants of the simulated time axis. Each cycle

consists in first calling the rule-based enabler which returns

CEnab, then the ESCP-net executor with CEnab which

returns Fseq, and finally the monitor with Fseq. In the

remainder of this section, we describe ESCP-nets, the

executor, the enabler, and the monitor (and we also precise

what CEnab and Fseq are), and we conclude with a brief

description of our implementation of the architecture.

A. Extended Simple Colored Petri Nets

ESCP-nets [1, 2] are a new class of Petri Nets. As implied

by their name, they constitute an extension of Simple

Colored Petri Nets (SCP-nets) [3]. SCP-nets are conceived

as a good trade-off between “classical” Petri Nets (P-nets) [6]

and Colored Petri Nets (CP-nets) [5]: while being much

more convenient and compact than P-nets, they are fairly

simpler than CP-nets, thus being more easily implemented

and more amenable to formal analysis. ESCP-nets add some

features to SCP-nets to make them well-suited to be used in

plant simulations, possibly being externally supervised (e.g.

by an expert system, as in our architecture).

The tokens of an ESCP-net are defined by a token

taxonomy, i.e. a finite directed acyclic graph (DAG) of

identifiers (like the one in Fig. 3). The terminal nodes (e.g.

cf2, ready, none) are base tokens, the non-terminal nodes

(e.g. Material, Fossil, State) are base types. Given a base

token k and a base type y, k has type y iff there exists a path

from y to k in the DAG (e.g. s2 has type Ship, peg has both

type Mineral and Material, off has not type Free). In addition,

for any ESCP-net, real numbers are also base tokens, the

distinguished identifier R is also a base type, and each real

number has type R. A token is a finite sequence k1;…;kn of

n ≥ 1 base tokens (e.g. peg;1000.5, free), and a type is a

finite sequence y1;…;ym of m ≥ 1 base types (e.g. State,

Material;R). k1;…;kn has type y1;…;ym iff n = m and each ki

has type yi (e.g. cf3;4000 has both type Fossil;R and
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Fig. 2: The organization of our architecture.
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Material;R, but not type R;Fossil or Ship). Even though token

taxonomies often happen to consist of one or more disjoint

trees (as in Fig. 3), in general a DAG allows more flexibility

(e.g. overlapping independent classifications of materials).

An ESCP-net contains places, transitions, and arcs

connecting them, as in Fig. 4. There are also macro places

(e.g. ROADSTEAD, as indicated by the shading), i.e. place-

holders for ESCP-net fragments called ESCP-subnets, like

those in Fig. 5. An ESCP-net may contain recursively nested

ESCP-subnets, but it can be always flattened by recursively

replacing each macro place with its corresponding

ESCP-subnet.

Each place is labeled by a type, and it can be marked by

tokens of that type only. For instance, FOSSIL_POOL is

labeled by Fossil;R, and it is always marked by four tokens

cf1;x1, cf2;x2, cf3;x3, and cf4;x4, where x1, x2, x3, and x4 are

the tons of the respective materials present in the fossil pool

(we have indicated such tokens by ellipses to reduce

graphical cluttering). MINERAL_POOL, labeled by Mineral;R,

is marked analogously.

Each arc is labeled by an expression, which may contain

tokens, variables, and functions. Each variable has a type,

and it can only be assigned tokens of that type (e.g. mq has

type Material;R, and can be assigned f1;32000 but not s2 or

ready). Each function maps tokens of its domain to tokens of

its range, e.g. cargo_of maps each ship (identifier) to the

fixed materials in fixed quantities carried by it (note that

none;0 denotes the absence of a material):

cargo_of (s1) = peg;32000;p1;32000;none;0 ,

cargo_of (s2) = peh;64000;none;0;none;0 ,

cargo_of (s3) = peg;32000;none;0;none;0 ,

cargo_of (s4) = p2;32000;f1;32000;none;0 ,

cargo_of (s5) = p2;32000;none;0;none;0 ,

cargo_of (s6) = f2;8797;f3;26165;f4;25038 ,

cargo_of (s7) = cf1;15000;cf2;15000;cf3;30000 ,

cargo_of (s8) = cf4;30000;none;0;none;0 .

A binding is an assignment of tokens to variables. Given a

binding for the variables of an expression, the expression

evaluates to a token (e.g. if we assign s8 to s, the expression

s;cargo_of(s) evaluates to s8;cf4;30000;none;0;none;0).

The firing of a transition with a binding for the variables

“surrounding” the transition, amounts to first removing

tokens from the input places and then adding tokens to the

Abbreviations: Cargo = Material;R;Material;R;Material;R

empty = none;0

allempty = empty;empty;empty

Functions: cargo_of : Ship → Cargo

c_rate, u_rate : Material → R

+, −, ∗, / : R;R → R

Variables: s : Ship

sc : Ship;Cargo

fm : Fossil

mm : Mineral

m : Material

mq, mq1 : Material;R

q, q1, qcf1, …,qf4 : R
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Fig. 4: The ESCP-net for the Servola-Trieste plant.



output places, as indicated by the tokens which the

corresponding arc expressions evaluate to. Of course, the

tokens to be removed must be present in the input places, in

order for the transition to be enabled with the binding. For

instance, TO_F_POOL is enabled with a binding which

assigns cf2 to fm, 15000 to q, and 80000 to q1, iff BUFFER

contains a token cf2;15000 and FOSSIL_POOL a token

cf2;80000. If enabled, its firing removes cf2;15000 from

BUFFER and replaces cf2;80000 with cf2;95000 in

FOSSIL_POOL.

Each transition can be labeled by a guard, which, if

present, must be satisfied in order for the transition to be

enabled. For instance, START_UL1 is labeled by m ≠ none,

satisfied iff the token assigned to m is not none.

Each token must wait a certain amount of time before

being allowed to leave a place. In fact, each token marking

an ESCP-net has an associated waiting time, i.e. a natural

number indicating the residual time (in some discrete units)

to wait, to be decremented as time passes. A token may leave

a place only if its waiting time is 0. The waiting time of a

token entering a place is initialized according to a stochastic

time labeling the place. For instance, MOORING and

UNMOORING are both labeled by gauss(240,30), which

means that initial waiting times of tokens entering them

have a gaussian distribution with mean 240 and standard

deviation 30 (both values representing minutes). The initial

waiting times in TRAVELLING have a uniform distribution

between 0 and 10080 (10080 minutes is 7 days). Stochastic

times may contain non-constant expressions, so that different

tokens may have slightly different distributions in a same

place, as in UNLOADING1, where const(q/u_rate(m))

indicates a constant (i.e. deterministic) initial waiting time

determined by the quantity q of material and the unloading

rate of the material u_rate(m).

An ESCP-net has a control interface through which it can

be externally supervised. A control interface consists of a

distinguished set of transitions (called controlled transitions)

and, for each of them, a distinguished subset of the variables

surrounding it (called controlled variables). Controlled

transitions must be explicitly enabled by the external

s;m;q;mq;mq1

m≠nonem≠nonem≠none
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Fig. 5: The ESCP-subnets for the Servola-Trieste plant.



supervisor in order to fire, and the supervisor must also

specify the tokens to be assigned to controlled variables. For

instance, CALL_SHIP is a controlled transition (as indicated

by the shading), and s is its (only) controlled variable (as

indicated by the underlining), as the expert system decides

which ship must be called when.

We conclude this subsection with some remarks to

complete the description of Fig. 4 and Fig. 5. To reduce

graphical cluttering, we have omitted all the const(0)

stochastic times. The roadstead is modeled as a FIFO buffer

with 30 slots (which is enough). The expressions and guards

in the ESCP-subnet UNLOADING constrain the materials

carried by a ship to be unloaded in order. The working of the

blast-furnace is “discretized” into one-hour cycles (as in the

Fortran simulator of the plant) each starting with the firing

of FEED, which causes the quantity of each material

consumed in one hour by the blast-furnace to be removed

from the pools (most arcs between FEED and FOSSIL_POOL,

and between FEED and MINERAL_POOL, are indicated by

ellipses to reduce graphical cluttering). The function c_rate

in fact returns the consumption rate of the argument

material. The blast-furnace is turned off or on (upon decision

of the expert system) by respectively firing TURN_OFF or

TURN_ON (which are in fact controlled transitions).

B. The Executor

The input CEnab of the executor is a finite multiset of

pairs 〈t, β′〉, where t is a controlled transition and β′ is a

binding for its controlled variables. CEnab specifies which

controlled transitions are allowed to fire with which values

assigned to their controlled variables, and it is a multiset,

instead of simply a set, to allow a same firing to take place

more than once. The output Fseq of the executor is a finite

sequence of pairs 〈t, β〉, where t is a transition and β is a

binding for its surrounding variables. Fseq orderly specifies

which transitions have fired with which bindings.

The actions performed by the executor when it is called,

can be conceptually explained as follows. First, the waiting

time of each token marking the ESCP-net is decremented by

1 (unless it is 0, in which case it is unaltered). Furthermore,

Fseq is set to the empty sequence. After that, the executor

computes the set Enab of all pairs 〈t, β〉 such that t is a

transition, β is a binding for its variables, t is enabled with β
in the current marking, and, in case t is controlled, 〈t, β′〉 is
in CEnab for some β′ assigning the same tokens as β to the

controlled variables. By virtue of some restrictions (which

we did not mention in the previous subsection for brevity)

about the expressions labeling incoming and outgoing arcs of

transitions, it can be shown that Enab is always finite. So, an

element 〈t, β〉 in Enab is randomly chosen, and t fires with

β. The pair 〈t, β〉 is appended to Fseq. If t is a controlled

transition, one occurrence of the 〈t, β′〉 from which 〈t, β〉 was

computed, is removed from CEnab; otherwise CEnab is

unaltered. The set Enab is re-computed, and things go on

this way until Enab is empty (note that if Enab never gets

empty, the executor loops forever, but this means that the

ESCP-net is ill-designed). At that point, the executor returns

Fseq.

C. The Rule-based Enabler

The rule-based enabler computes CEnab as a function of

the current marking of the ESCP-net, by means of user-

supplied rules (different rules are supplied for different

ESCP-nets). Rules follow a specified syntax, and are

“executed” by the enabler, to determine CEnab, according to

a specified semantics.

For instance, in our simulator of the Servola-Trieste plant

there is a rule of the following form:

marked (MINERAL_POOL, peh;q, 1)   ∧
q < 21600∗c_rate(peh)   ∧
¬ contains (TRAVELING, peh)   ∧
¬ contains (ROADSTEAD1, peh)   ∧
   …

¬ contains (ROADSTEAD30, peh)   ∧
¬ contains (MOORING, peh)   ∧
¬ contains (UNLOADING1, peh)   ∧
¬ contains (UNLOADING2, peh)   ∧
¬ contains (UNLOADING3, peh)   ⇒

enabled (CALL_SHIP, {s:s2}, 1) .

The execution of this rule starts with checking the truth of

the antecedent, which is true iff the quantity of peh in the

mineral pool is below a threshold corresponding to 15 days

(i.e. 21600 minutes) of blast-furnace’s working, and no ship

carrying peh is traveling, waiting in the roadstead, being

moored, or unloading its cargo. If it is true, the consequent

causes one occurrence of 〈CALL_SHIP, β 〉, where β is the

binding which just assigns s2 to s, to be added to CEnab.

There are other eleven similar rules, for the other materials.

There is also a rule to turn on the blast-furnace if it is off but

there are sufficient quantities of all materials:

marked (IDLE, off, 1)   ∧
marked (FOSSIL_POOL, cf1;qcf1, 1)   ∧
   …

marked (MINERAL_POOL, f4;qf4, 1)   ∧
qcf1 ≥ 60∗c_rate(cf1)   ∧
   …

qf4 ≥ 60∗c_rate(f4)   ⇒
enabled (TURN_ON, {}, 1) .

Finally, there is a rule to turn off the blast-furnace if it is on

but some material runs out:

marked (IDLE, ready, 1)   ∧
marked (FOSSIL_POOL, cf1;qcf1, 1)   ∧
   …

marked (MINERAL_POOL, f4;qf4, 1)   ∧



( qcf1 < 60∗c_rate(cf1)   ∨
   …

  qf4 < 60∗c_rate(f4) )   ⇒
enabled (TURN_OFF, {}, 1) .

D. The Monitor

The monitor is in charge of performing all the “output”

activities of the simulator. These may include logging some

meaningful events and the times they happen, computing

and logging statistical data, providing animated graphical

representations of the working of the plant, and so on. At

each call, the monitor produces its output from Fseq and

from the current marking of the ESCP-net.

For instance, the monitor of our simulator of the Servola-

Trieste plant produces an ASCII log like that produced by

the existing Fortran simulator. However, the modularity of

our architecture allows an easy replacement with an

improved monitor which also shows animations of moving

ships, heaps varying their size, etc.

E. Implementation of the Architecture

For the implementation of the simulation master, the rule-

based enabler, and the monitor, we have employed Gensym

G2 [4], a state-of-the-art object-oriented environment for the

development and execution of knowledge bases. G2

knowledge bases may in fact contain inference rules, generic

procedures, and graphical interfaces (through which

animations can be realized with relative ease). We have

realized a knowledge base to be used as a starting point for

each plant simulator: the simulator developer just has to

enhance it by writing the rules, and by implementing the

monitor through the extensive and easy-to-use facilities

offered by G2.

We have implemented the ESCP-net executor in C++, as a

separate process which communicates with the G2 process.

We have also implemented a visual editor in C++ by which

the simulator developer, through and intuitive graphical

interface, can create and edit the ESCP-nets to be executed.

IV. CONCLUSIONS AND FUTURE WORK

The previous section gives evidence of the validity of our

architecture for the simulation of real-world plants (even

more complex than the Servola-Trieste one), as development

times and errors can be dramatically reduced. In fact, while

the development of the Fortran simulator had taken weeks,

the development of our simulator just took days.

Furthermore, ESCP-nets and rules are far more readable and

easy to understand than source code listings.

The main advantage in using ESCP-nets instead of

CP-nets, lies in their minor complexity, while still allowing

much greater convenience and compactness than P-nets in

modeling plants. That results in easier implementation (and

maintenance), and makes them more amenable to formal

analysis.

While currently the rule-based enabler’s decisions only

depend on the marking of the ESCP-net, more elaborate

decisions might be taken by embedding some kind of state

(e.g. statistical information about some activities of the

plant) into it, and letting decisions also depend on this

additional state. This is a direction for future work.

Our current implementation of the ESCP-net visual editor

allows the developer to recursively nest ESCP-subnets in

macro places. We have planned, for the near future, to allow

the creation and editing of parameterized ESCP-subnets,

which can then be instantiated with actual parameters and

used in larger ESCP-nets or ESCP-subnets. In this way,

libraries of ESCP-subnets can be defined and used for

modular development. For example, we could define a

“buffer” ESCP-subnet parameterized on the dimension, on

the type of tokens to be stored, on the buffering policy (FIFO,

LIFO, etc.), and so on.
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