
Roadmap for Enhanced Languages
and Methods to Aid Verification

Gary T. Leavens
Iowa State University, Ames, IA USA

����������	
������	��

Jean-Raymond Abrial
ETH Zürich, Switzerland

����
���
��	����	��

Don Batory
University of Texas, Austin, TX USA

���������	�����	��

Michael Butler
University of Southampton, UK
�	�	���������	�����	��	�

Alessandro Coglio
Kestrel Institute, CA, USA

����
���������	��

Kathi Fisler
Worcester Polytechnic Institute, MA,

USA
����������
�	���

Eric Hehner
University of Toronto, Canada

���������	�������	��

Cliff Jones
Newcastle, UK

��
�	���������	��	�

Dale Miller
INRIA-Futurs, Polytechnique, France

������
�	���������
 �	��

Simon Peyton-Jones
Microsoft Research, Cambridge, UK

�
�������
�������	���

Murali Sitaraman
Clemson University, SC, USA

����
���	�������	��

Douglas R. Smith
Kestrel Institute, CA, USA

��
����������	��

Aaron Stump
Washington University of St. Louis, MO, USA

��������	!���	��

Abstract
This roadmap describes ways that researchers in four areas — spec-
ification languages, program generation, correctness by construc-
tion, and programming languages — might help further the goal
of verified software. It also describes what advances the “verified
software” grand challenge might anticipate or demand from work
in these areas. That is, the roadmap is intended to help foster col-
laboration between the grand challenge and these research areas.

A common goal for research in these areas is to establish lan-
guage designs and tool architectures that would allow multiple an-
notations and tools to be used on a single program. In the long term,
researchers could try to unify these annotations and integrate such
tools.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications — languages, methodologies;
D.2.4 [Software Engineering]: Software/Program Verification —

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00

assertion checkers, class invariants, correctness proofs, formal
methods, model checking, programming by contract; D.2.10
[Software Engineering]: Design — methodologies, representa-
tion; D.2.11 [Software Engineering]: Software Architecture —
data abstraction, information hiding, languages; D.2.12 [Software
Engineering]: Reusable Software — reusable libraries; D.3.1
[Programming Languages]: Definitions and Theory — seman-
tics; D.3.2 [Programming Languages]: Language Classifications
— extensible languages, specialized application languages, very
high-level languages; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features — abstract data types, classes and
objects; D.3.4 [Programming Languages]: Processors — transla-
tor writing systems and compiler generators; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs — assertions, invariants, logics of programs, me-
chanical verification, pre- and post-conditions, specification tech-
niques; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages — program analysis; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs— type
structure

General Terms Languages, Verification

Keywords Verification, verified software grand challenge, specifi-
cation languages, program generation, correctness by construction,
programming languages, tools, annotations.

221



1. Introduction
Hoare has proposed a grand challenge project, formerly called the
“verifying compiler” grand challenge [69], and now called the “ver-
ified software” grand challenge by Hoare, Misra, and Shankar [70].
The original idea was to automatically check correctness of pro-
grams that are “specified by types, assertions, and other redundant
annotations.” However, the current version of the grand challenge
recognizes the possibility of many tools, some of which may re-
quire human intervention or assistance. In any case, verification
would be based on the text of the program and the annotations con-
tained within it.

1.1 Audience

This report is addressed to two audiences. The first is researchers
interested in program verification, especially related to the “veri-
fied software” grand challenge. The second is researchers in the
following areas:

specification languages that describe behavior or properties to be
verified,

program generation that automatically synthesizes code,

correctness by construction that concerns development and doc-
umentation of implementations especially to facilitate verifica-
tion, and

programming languages that describe algorithms and data.

The report is addressed to researchers in these four areas who are
interested in verification, specifically how their work might aid the
verifying software grand challenge. This report explains what these
four areas might do to help the overall grand challenge project and
thus foster the goal of verified software within the scope of the
grand challenge project. It is not intended to suggest an overall
research agenda for any of these areas.

1.2 Motivation

There are many approaches to verification, all of which are em-
braced by the grand challenge effort. One can write or find code
and verify it using a variety of tools and approaches.

While recognizing the value of many approaches to producing
verified software, researchers in the four areas mentioned above are
often motivated by the idea of gaining benefits (in ease, productiv-
ity, or power of verification) by providing the verifier with more in-
formation than just a bare program in some standard programming
language. Verifying a bare program after-the-fact has the following
fundamental problems.

• Without a specification or some annotations in the code, the
properties that one can verify must be implicit and thus very
weak, such as that the program will not crash or throw excep-
tions.

• Even with a specification, a program can be arbitrarily difficult
to verify (due to lack of modularity or other artificial complex-
ities).

With regard to the first point, even adding some partial specifi-
cations makes the verification problem more interesting and the re-
sults more useful. This is a potentially valuable technique for legacy
code. For example, one might specify that a function returns a list
of length equal to its input, which is only a partial specification of
what the function does. Indeed, there is an entire spectrum of prop-
erties that one might consider, as shown in Figure 1. So there is not
necessarily a unique best specification for a function, since some
kinds of properties, such as resource consumption, its behavior in a
transactional setting, its real-time behavior, and so on, may best be

thought of as outside of the traditional specification of functional
behavior.

��

No crashes
No type errors

No exceptions
No deadlock

Preconditions
hold

Control and
functional
behavior

. . .

Figure 1. A spectrum of specification properties, from partial
specifications on the left to more complete specifications on the
right.

With regard to the second point, researchers believe that infor-
mation about design decisions made in the program’s development
can be of great use to the verification process. Well-known exam-
ples are annotations for loops and object invariants, but information
can also be obtained from the process of generating a program (up
to and including a complete proof), and the process of construct-
ing a program and its proof hand in hand. Intermediate modeling
and refinement steps are also believed to greatly aid verification
and may in the limit constitute a proof. Types in programming lan-
guages can also be augmented with additional information related
to correctness proofs, and other program annotations, such as those
describing ownership in the heap, can be of great value. To summa-
rize, the motivation for all these areas is to make such information
available to a verifier.

1.3 Limitations

The “research roadmap” that follows is limited in several ways.
First, the roadmap focuses on the four research areas named

above and their relation to verification. Other techniques and re-
search areas related to verified software are largely ignored. Fur-
thermore, although there are many ways in which these four re-
search areas might aid the general goal of more reliable software,
this roadmap only focuses on the specific ways that these areas
might produce verified or more easily verifiable software in the
context of the grand challenge project. Much research is already
going on in all of these areas to promote more reliable software,
and such research would also contribute, indirectly, to the goal of
making software easier to verify. However, discussing all such re-
search would lead to a very broad survey which would be of less
use to the verified software grand challenge.

The second way in which our roadmap is limited is that it has
only (thus far) drawn on the expertise of a very small sample of
researchers in each of the research areas.1 The authors of this
report were selected in the following way. A conference on the
verified software grand challenge was held in Zürich Switzerland
in October 2005 [68]. At that conference, the organizers — Hoare,
Shankar, and Misra — picked leaders for three committees to write
research roadmaps. Leavens was picked to lead the committee
writing this report. Leavens in turn picked the committee members,
intentionally aiming for a small committee, using a selection that
was biased toward people who had attended the conference in
Zürich.

Finally, the preceding limitations result in limitations on the
applicability of our roadmap. First it is biased toward research
directly related to the verified software grand challenge. Second,
since the committee is small compared to the number of researchers
in the four research areas, this report does not necessarily represent
a consensus of the researchers in any of the four research areas.

1 However, it also reflects feedback from the members of IFIP working
group 2.3, the mini-conference on verified software April 1–2, 2006 held at
SRI, and the Dagstuhl workshop on “The Challenge of Software Verifica-
tion” July 10–13, 2006.

222



1.4 Outline

The next section gives some background about verification prob-
lems and challenge problems. Following that, Section 3 describes
the common goal of the four areas with respect to the grand chal-
lenge, that is, what they might, overall, provide to it. Sections 4–7
describe the more specific needs and potential research directions
in each of the four areas. Section 8 concludes this report.

2. Background
This section gives some background on verification problems and
lays out some needs that researchers in the four areas have for
challenge problems.

2.1 Verification Problems

An enhanced language or tool is intended to work on some class
of verification problems. A precise way to state a such class of
verification problems is to describe:

• a specification language, in which to state the assumptions and
guarantees of a correct implementation, and

• a programming language, in which to implement the specifica-
tions, and whose code is to be verified.

A specification in the specification language together with a pro-
gram in the programming language constitute a problem for a ver-
ification system. A pair of a specification and programming lan-
guage describe the set of possible such problem instances that such
a system should be able to handle.

The specification language and programming language might
be integrated; there is no need to have two separate languages.
Some examples of integrated languages are Gypsy [7], Alphard
[64, 93, 124], Euclid [84, 92], Eiffel [98, 99], Resolve [45, 116],
and SPARK [18].

For various reasons the grand challenge project has not articu-
lated, and will probably not articulate, constraints on what verifica-
tion problems are of interest. But verification problems of interest
will be described indirectly, through challenge problems.

2.2 Challenge problems

Challenge problems can help stimulate research, especially in the
short term. The following are some suggestions for such challenge
problems.

To reward research that can handle problems of significant size,
the challenge problems should be big enough to require reusable
modules and structuring (at multiple levels).

Challenge problems at a minimum need to have explicitly stated
(informal) requirements. It will also be helpful to have formal
requirement models.

A formal specification of the properties of interest for each chal-
lenge problem is also needed by each of the four areas. Those work-
ing in specification languages could use the formal specification as
a baseline for case studies that compare their work against the nota-
tion used to state the properties of the challenge problem. The other
areas need a formal specification as a starting point for certain kinds
of research.

As a practical matter, and as an aid to those working in all four
areas, challenge problems should also come with test cases.

To aid work on programming languages and some researchers
in the correctness by construction approach, it would also be help-
ful to provide well-tested candidate implementations with each
challenge problem. Such implementations would be useful to re-
searchers in programming languages, who could try to devise alter-
native implementations or languages that would allow easier veri-
fication of implementations.

3. Common Goal: Verifiable Artifacts
To set out goals for the four areas, we make some assumptions. The
main assumption is that the grand challenge is interested in at least
the following:

• specification of safety properties (e.g., the relation between
inputs and outputs, lack of deadlock), and

• imperative programming languages (such as Pascal or C), in-
cluding object-oriented languages (such as Java).

On the one hand, although it is non-trivial and of some eco-
nomic importance, this is a rather small class of verification prob-
lems. For example, most imperative programming languages have
only limited support for concurrency (e.g., threads in Java), but dif-
ferent models of concurrency may become increasingly important
in the next several years. On the other hand it is still perhaps too
large, because it encompasses the entire spectrum of safety prop-
erties, including everything in Figure 1. The reader should keep in
mind that the grand challenge project may indeed be interested in
other kinds of specifications and programs. In that case this report
will most likely be missing some potentially interesting research
directions.

Assuming the goal of the project is to build tools that will be
able to handle at least verifying safety properties for imperative
languages, we see the following short-term and long-term goals that
are shared across the four areas.

3.1 Short Term: Extensible Languages and Tools

In the short term (i.e., in the next 5-7 years), a common goal is
to allow for extension of tools and languages by other researchers
(and ultimately, by users).

For specification and programming languages, this means de-
signing languages so that other researchers (and ultimately users)
can add new specification notations and new annotations to aid in
verification proofs. These languages should allow specifications to
be added (and proved) incrementally.2

Such extensions should ideally not just describe syntax, but also
have access to information from the language processor (e.g., a
compiler). User-extensible annotation mechanisms, such as those
found in C# and Java may be a useful technique for achieving parts
of this goal.

In all four areas, tool builders should strive to define architec-
tures that will permit other researchers to easily add new specifi-
cations and other proof-oriented annotations, that will enable other
tools to cooperate on verification of the same program. XML may
be an aid for achieving parts of this goal. Overall, the idea is to
recognize that no one tool will have all the necessary features for
attacking all parts of a difficult verification problem. Tool (frame-
work) builders should make it easier to build new tools or extend
existing tools. This in turn will help other researchers gain much
needed experience with their approaches, but at a lower cost.

Since efforts in building extensible tools can have a multiplica-
tive effect in enabling research, such efforts should be highly en-
couraged by the project.

3.2 Long Term: Unification

In the long term (8-15 years), researchers should attempt some con-
solidation of various languages and tools in their areas. This is de-
sirable because the software industry does not want to deal with
many different languages, notations, methods, and tools. Further-
more, it is also theoretically unsatisfying to have to explain a wide

2 In addition to the utility of such annotations in verification, the more
properties one proves, the more confidence one has in a program. This is
an additional motivation for the goal of allowing language extension.

223



diversity of approaches. Thus, while research will continue to make
progress by exploring a wide range of approaches to attacking veri-
fication problems, in the second half of the project some researchers
should also build on and consolidate the ideas of several tools and
languages.

4. Research in Specification Languages
This section was mainly written by: Gary T. Leavens, Kathi Fisler,
Cliff Jones, Douglas R. Smith, and Murali Sitaraman.

4.1 Need for Specification Languages

Research in (formal) specification languages is central to the grand
challenge, because interesting verification problems contain inter-
esting specifications. Thus the grand challenge project needs at
least one specification language for stating the properties that are
to be verified in the class of verification problems of interest. Even
if the class of verification problems only encompasses very weak
or partial specifications, such as those on the left side of Figure 1,
there will still be the need for a specification language (although in
the extreme case, the specification language might be trivial in the
sense that it contains just one sentence: “the program should not
crash”).

4.2 Assumed Scope

Since it is not clear what properties are of interest to the grand
challenge, this section assumes that the set of properties of interest
includes at least safety properties for sequential and concurrent
programs. That is, the remainder of this section assumes that the
grand challenge is interested in specifying at least:

• assertions about states and data values, which allow one to de-
scribe the functionality of procedures in imperative program-
ming languages, and

• properties of the history of events in a program’s execution.

4.3 Background: Kinds of Specification Languages

This section defines terms used in the description of short-term and
long-term research directions, particularly about different kinds of
specification languages.

Specifications can be stated at many different abstraction levels.
At the highest level of abstraction are requirements [138], which
describe the behavior of entire programs from the end-user’s per-
spective, often including non-functional properties, such as cost or
time. Requirements are initially informal, but may be (partially)
formalized later. What we hereafter refer to as specifications are
statements that may describe or refer to a program’s internal states
or events, which may not be directly visible to a program’s user.
Such statements are usually formal and describe a class of pro-
grams or program modules (components) that have a design with
features that can be related to the internal states or events men-
tioned in the specification. Thus what we call specifications are at
a level of abstraction that is more relevant to the detailed design of
a program. Such detailed-design specifications are capable of doc-
umenting interfaces of individual program modules, such as proce-
dures or classes [144].

One technique for writing such specifications is algebraic [57,
56, 46, 54], in which one writes axioms that relate operations to
other operations. While the early papers described non-imperative
examples, this technique has also been adapted to specification
of imperative code [25, 55, 67]. The CLEAR language [28, 29],
which provides category-theoretic foundations for the structuring
and refinement of algebraic specifications. In CLEAR, specification
morphisms are used to structure specifications, and colimits serve
to compose specifications. Later examples of this approach include
Specware [79] and CASL [24].

Another technique for writing such specifications is the pre- and
postcondition style originated by Hoare [65]. In this technique, if
a purely mathematical language, such as higher-order logic (as in
the PVS theorem prover [117] or Isabelle/HOL [111]) or temporal
logic [94] is used for specification of a program, there must be some
abstraction function (or relation) that maps the states or events in
the program’s execution to the abstract states or event models that
the specification’s formulas mention [66, 82, 147]. Many behav-
ioral specification languages, such as VDM [77], Z [131], Object-
Z [120], and OCL [140] have more structuring mechanisms, many
of which resemble structures (such as procedures and classes) in
programming languages. Besides helping structure larger specifi-
cations, such mechanisms constrain what kinds of abstraction func-
tions are considered in proofs.

Carrying these structuring mechanisms farther, by writing spec-
ifications as annotations to programs in some particular program-
ming language, yields an interface specification language [143]. In
such a language, a correct implementation must have both the spec-
ified interface and specified behavior (or properties), and thus the
relation between a program’s state (or events) and the abstract state
(or events) described by the specification is much more tightly con-
strained. Examples of behavioral interface specification languages
include the Larch family [58, 143], the Resolve family [45, 116],
SPARK [18], Eiffel [98, 99], JML [27, 86], and Spec# [19, 20, 87].
Examples of history-based interface specification languages in-
clude Bandera [39] and Java Pathfinder [59]. Interface specifica-
tion languages, with their close relationship to a programming lan-
guage, seem likely to be important for the grand challenge, espe-
cially in the short term.

4.4 Short-Term Research Goals

The following are some short-term (5-7 years) research goals for
specification language research.

4.4.1 Open Languages and Tools

Specification languages should be designed to be extensible and
open, so that researchers can more easily experiment with vari-
ations and extensions. Tools for specification languages, such as
type checkers or verification condition generators, should also be
designed with an architecture that makes for easy variation and ex-
tension. Tools should also allow different analysis and verification
systems easy access to and manipulation of specifications, as these
will aid the verification efforts of the grand challenge.

4.4.2 Reasoning about Partial Specifications

Tools for specification languages should make it easy to state and
prove logical consequences of specifications. These can be used
both for debugging specifications and for proving connections with
formalizations of requirements, etc. It should not be necessary to
have a complete specification in order to do such reasoning; in other
words, it should be possible to reason about partial specifications in
which many parts are underspecified, to permit early debugging of
the specification.

4.4.3 Refinement

Tools for specification languages should make it easy to state re-
finements between specifications [14, 61, 100, 101, 42, 79]. There
should be automated support for both debugging and proving such
refinements, using techniques such as model checking for finding
problems with proposed refinements. Section 6 discusses both the
posit-and-prove and transformational approaches to proving refine-
ments, and how these techniques can aid verification.

224



4.4.4 Modularity and Reuse

Specification languages should permit modular descriptions of
reusable interfaces. While verified software does not have to be
reusable, reusable modules can make it easier to develop larger and
more interesting verified software.

4.4.5 Specification of Resources

If non-functional properties, such as time and space consumption,
are of interest to the grand challenge, then specification and rea-
soning techniques for such nonfunctional properties [62, 81, 126]
should be further developed and integrated with other kinds of
specification.

4.4.6 Interface Specifications

The design of interface specification languages poses some special
problems.

Specification and Translation of Assertions Experience with
Eiffel [98, 99] and Larch seems to suggest that programmers may
find that specification languages like Eiffel, in which assertions
are written in the syntax of the programming language, are eas-
ier to use than Larch-style languages. (See also Finney’s study of
mathematical notations [51].) However, other efforts in teaching
mathematical specifications to undergraduate students appear to be
quite successful, suggesting that the exact notations and language
might play a significant role in ease of understandability and use
[127]. Thus one research problem is to understand the ease of use
of different specification notations (both in practice and for use in
verification).

Another research problem is to study how to translate assertions
in different languages into logical formula that are useful in reason-
ing (e.g., in a theorem prover) [33, 6, 86].

Heap Structuring Better techniques for heap structuring, using
concepts such as ownership seem to hold promise for aiding veri-
fication of pointer-based and object-oriented programs. At the very
least, some way to prevent representation exposure [89, 113] seems
necessary to do modular reasoning about frame axioms and invari-
ants [78, 104, 105]. Heap structuring also seems helpful for making
sense of object invariants in systems built from abstraction layers
[19, 87, 106].

It may be that other simplifications in reasoning can be obtained
by introducing specifications that further restrict heap structures,
for example, to cycle-free-pointers, where such restrictions are
appropriate (e.g., in the implementation of lists and trees). What
are the right techniques for specifying such restrictions and what
kinds of reasoning benefits are obtainable?

Assistance in Writing Specifications To verify large programs
that use many modules and libraries, it is often necessary to spec-
ify large libraries or code. Many such specification tasks are quite
labor-intensive and somewhat unrewarding intellectually. Some au-
tomation would help. Tools like Daikon [48, 110] and Houdini
[53] have demonstrated that it is possible to recover some formal
specifications from code using various heuristics. It might be in-
teresting to infer specifications from examples or directly from test
cases. A research goal would be to have such tools work with user-
specified abstractions, so that they could be used to more quickly
write more abstract specifications. Or perhaps some automatic ab-
straction heuristics could be used. An environment for writing spec-
ifications could allow users to edit out some cases in a specification,
to achieve more abstraction by underspecification.

New Language Features If more advanced programming lan-
guages are of interest to the grand challenge project, then how to
specify properties of programs that use advanced features, like ad-
vice in aspect-oriented languages, will be important.

4.5 Long-Term Research Goals

The following are some longer term (8-15 years) goals for specifi-
cation languages.

4.5.1 Integration of Data and Control

An important challenge for specification language design is to inte-
grate the two disparate worlds of state-based and history-based (or
event-based) specification languages. Typically, specification lan-
guages either focus on sequential programs and describe properties
of data values, or they focus on concurrent programs and described
properties of event histories. However, complete verification of
concurrent programs demands reasoning about both data and con-
trol. Some potential approaches are to use atomicity [91, 119] or to
use transitions over relations.

4.5.2 Traceability

Links between requirements and detailed design specifications
should be able to be explicitly stated and reasoned about. One
approach may be to develop techniques for stating and proving
refinement relationships between (particular pairs of) requirement
and specification languages. Another approach might be to design
languages that are good both for formalizing requirements and for
specification of the detailed design.

4.5.3 Tool Frameworks that Support Integration

Frameworks that would make it easy to build tools for specification
languages and to integrate different tools for reasoning about spec-
ifications should be a long-term goal. Integration among reasoning
tools, such as model checkers and theorem provers, would also be
helpful.

4.5.4 Interface Specification Language Design

A theory of how to design interface specification languages should
be developed that allows a new specification language to be quickly
designed for a new programming language, at least within a fixed
set of programming paradigms. Ultimately such a theory should
extend beyond the imperative and object-oriented paradigms to
other paradigms of interest to the grand challenge.

Along the same lines, it may also be useful to understand how to
tailor the design of such a language to a specific architectural style.
This would potentially help with verification of programs written
in such styles.

5. Research in Program Generation
This section was mainly written by: Gary T. Leavens, Don Batory,
Alessandro Coglio, and Douglas R. Smith.

5.1 Background on Program Generation

A program generator [40] is a tool that produces code from some
higher-level description of the code. Conventional compilers for
languages such as C and Java fit this characterization, because
they generate lower-level assembly or bytecode from higher-level
programming languages. However, the term “program generator”
is typically used for tools that produce code in relatively high-
level languages such as C and Java, and where the higher-level
description of the code is a specification. Nonetheless, we do not
rule out the view of compilers as generators; in fact, the research
directions advocated here apply to compilers as well.

A program generator operates on the syntax of the source (spec-
ification) and target (code) languages. Roughly speaking, the gen-
erator reads the specification and writes the code, i.e. it transforms
the specification into the code. Program generators are often writ-
ten in conventional languages such as C or Java; they manipulate

225



data structures that encode abstract syntax trees of the source and
target languages. The pattern matching featured by languages like
ML and Haskell provides a convenient way to implement syn-
tactic transformations. Languages like Refine [73] and Stratego
[134] provide even more convenient features to implement syntac-
tic transformations in a more declarative way, by means of rewrit-
ing rules, strategies, and quotation/anti-quotation pattern matching.

5.2 Relation to Model-Driven Development

The premise of Model-Driven Development (MDD) [21, 26, 136]
is that a program has multiple representations, expressed as mod-
els. Transformations will update models and map models to other
models, and compose models.3 Since code is the most important
kind of model in MDD, MDD falls within the scope of the program
generation area.

5.3 Motivation for Program Generation

Program generation is useful for at least two reasons [40]. One
is productivity: instead of writing the code directly, the developer
writes and maintains the specification, which is supposedly shorter
and easier to read and write than the code. The other reason, which
is more relevant to our context, is that the code can be generated in
such a way as to be automatically verified; that is, it will be correct
with respect to the specification. The research directions advocated
here aim at automatic verification.

Program generation also fits well with the use of software prod-
uct lines. A software product line describes a family of programs
[22, 40]. Using a product line gives a significant reduction in artifi-
cial complexity, more regularity and structure in a program’s mod-
ules, and leads to modules are more likely to encapsulate incre-
ments in program functionality. All three are key requirements for
module reusability, large scale synthesis, and verification. Showing
how to verify software product lines would illustrate the connection
between scale, design, and verification.

5.4 Problem: Verified Program Generation

The problem is that even when using the most declarative syn-
tax transformation languages available, the semantics of the source
specification and of target code are not directly “represented” in the
program generator. Thus, it is very possible to generate code that is
incorrect with respect to the specification, by doing “wrong” syn-
tactic transformations. Achieving correctness is thus the overriding
research problem for program generation with respect to the grand
challenge.

5.5 Problem: Scalability

There has been significant progress in algorithm synthesis and au-
tomatic design optimization [129], especially in restricted domains;
examples include Planware [23], Amphion [133], and AutoBayes
[52]. While continued progress in the generation of moderate size
programs can be expected, a scalable approach to program gener-
ation must also focus on how to generate verified compositions of
reusable modules. A vast majority of practitioners and researchers
who are automating parts of program development are building
tools that are compositional in nature. COM, Java server pages, and
Enterprise Java Beans are examples. These tools stitch code mod-
ules together to synthesize larger modules. Most code modules are
written by hand, but some (e.g., parsers or boiler-plate interfaces)
are generated by simple tools. In effect, the specification languages
for these code synthesizers are akin to module interconnection lan-
guages.

3 Thus, roughly speaking, a model is an object and a transformation is a
method.

A module is more than just code; it encapsulates several dif-
ferent kinds of information: specifications, code, formal models
from which properties can be inferred, documentation, perfor-
mance models, etc. Specifications and performance models are
especially important for verification. It is thus important to syn-
thesize such information for generated compositions of modules
[22].

A well-known example of the above is the work on query opti-
mization in relational databases [123]. An optimizer maps a declar-
ative specification (e.g., a SQL SELECT statement) to an efficient
implementation. A SELECT statement is first mapped to a rela-
tional algebra expression, the expression is optimized, and then
code is generated from the optimized expression. Each relational
algebra operation is a module, and a relational algebra expression
is a composition of modules that represents a query evaluation pro-
gram. Each module (operation) encapsulates two different repre-
sentations: a performance model (which evaluates the efficiency of
the operation) and code (to implement the operation). The query
optimizer uses only the performance model of an operation to de-
duce the most efficient composition. The program synthesizer uses
only the code representation to generate the implementation. A
similar organization (i.e., modules containing multiple formal mod-
els) will be needed for program verification.

5.6 Short-Term Research Goals

The following are some short-term (5-7 year) research goals in the
area of program generation.

5.6.1 Formalizing Language Semantics

The first step to establish the correctness of generated code is to
formalize the semantics of the source and target language, along
with a notion of what it means for an artifact in the target language
(the code) to be correct with respect to an artifact in the source
language (the specification). For example, the correctness notion
could be that the two artifacts have the same observable behavior
(where the notion of observable behavior must be also formalized).
These formalizations should be developed in a suitably expressive
logical language with a formal proof theory, such as the languages
found in mundane theorem provers. Examples include Project Bali
[112] and the LOOP Project [75, 137], both of which formalize
Java.

5.6.2 Tool Development

Current (meta-)languages and tools [73, 134] do not deal with the
semantics and proof aspects of transformations, but only with their
syntax. Thus, an important research direction is to design languages
and tools, by which one can more directly represent semantics and
generate proofs and code in an integrated fashion.

5.6.3 Certified Code Generation

Instead of directly verifying the generator, a promising approach
is to have the generator produce, along with the code, a machine-
checkable proof of the correctness of the output code with respect
to the input specification [36, 37, 107]. The proof should use the
inference rules of the logical language in which the semantics of
source and target language, as well as the notion of correctness, are
formalized.

Then, as in the well-known proof-carrying code technique
[108], the proof is checked by a simple proof checker, so that trust
is shifted from a large and complex generator to a small and simple
checker.

5.6.4 Transformation Patterns

Proof-generating transformation patterns, which will emerge from
applying program generation in practice should be cataloged; e.g.

226



taxonomies of algorithm theories and datatype refinements [130].
These catalogs will help others apply the ideas and build tools more
quickly.

5.6.5 Better Algorithms to Aid in Program Generation

To apply general design principles and transformations to a con-
crete specification requires some analysis (to verify applicability
conditions) and constructive inference (to extract expressions to fill
in design templates).

More practical program generation requires low-order poly-
nomial time algorithms for analysis and constraint solving. A
promising approach is to compose constraint-solvers and decision-
procedures for various specialized theories. Static analysis can
also sometimes provide a fast alternative to search-based theorem
provers.

5.7 Long-Term Research Goals in Program Generation

The following are some long-term (8-15 year) goals for research in
program generation.

5.7.1 Scalability

To allow scalability of program generation, techniques for gener-
ating compositional, well-structured designs are needed in each
application domain. A complementary need is for techniques for
composing properties, specifications, and other non-code informa-
tion in modules. It must be clear how such compositions preserve
(or affect) properties of interest.

5.7.2 Taxonomy of Proof-Generating Transformations

A collection of proof-generating patterns (or templates) should be
made into a library, categorized by various dimensions, such as ap-
plication domain, source and target language, etc. This knowledge
would make it easier to develop future program generators.

5.7.3 Better Tools and Frameworks

Researchers could design better languages, tools, and frameworks,
to ease the task of building future program generators. Such tools
could both more directly support proof generation and could also
ease the proof of correctness for the program generator itself.

Such tools and languages could also more directly support
proof-generating patterns.

5.7.4 Factoring the Certification Process

Establish sound techniques for incorporating formal proofs into the
certification process for program generators, in order to eliminate
some testing and reduce the need for other kinds of testing. (Cur-
rent practice is to perform extensive and expensive testing, both to
validate the generated code’s functionality and performance, and to
test for vulnerabilities and flaws along various code paths.) Given a
complete specification from which the code is generated, together
with a proof of consistency between code and specification, there
should be little need to perform path testing to reveal flaws. There
will still be a need to test that the specification meets intentions, but
that can be a more specialized activity. Also, those requirements
that are not treated during generation or refinement (e.g. perfor-
mance concerns) would also still need to be tested.

5.7.5 Allow Update of Running Systems

For embedded systems, it is often necessary to update (fix) the code
while the system is running. Supporting such updates in a system
where code is generated may be a matter of generating the code to
allow for eventual update.

5.7.6 More Manual Control

To allow users to operate outside a limited domain to some extent,
program generators could be designed to allow more manual input,
making them a blend of a program generator and a correctness by
construction system, as described in the next section.

6. Research in Correctness by Construction
This section was mainly written by: Michael Butler, Gary T. Leav-
ens, Eric Hehner, Murali Sitaraman, Jean-Raymond Abrial, and
Cliff Jones.

6.1 Motivation

Much discussion on the need for a powerful program verifier seems
to contain the following underlying assumptions:

• That a program verifier will be used mostly to verify completed
programs.

• That when verification fails it is because the program contains
errors.

While a powerful program verifier is a very valuable tool for
programmers, it does not help them construct a correct program
in the first place, nor does it help document and explain decisions
(e.g., those motivated by efficiency considerations) made in exist-
ing code.

Equally important, the correctness of any verification is depen-
dent on the validity of the formal properties against which a pro-
gram is checked. Since we cannot, in general, guarantee that such
properties are what users really want, we will, in the remainder of
this section use the phrase “verification by construction,” instead of
the more common phrase “correctness by construction,” to empha-
size the potential problems with the initial specification.

The verification by construction approach helps developers who
want to construct verified software systems by addressing the fol-
lowing questions:

Q1 How do we construct models and properties against which to
verify our software?

Q2 How do we ensure that our models and properties properly
reflect the requirements on the system?

Q3 How do we take account of the environment in which our
software is intended to operate?

Q4 How do we construct our software so that the verification will
succeed?

In the following, we will largely ignore question Q2, since it too
large and important to be included in our grand challenge; it would
constitute a grand challenge on its own.

As can be seen from the other questions, the verification by con-
struction approach broadens the focus away from just verifying a
finished product to analysis of models at all stages of the develop-
ment process. It encourages verification of designs and not just ver-
ification of programs. Verification of designs may lead to a greater
payoff than just verifying programs. Introducing formal modeling
early in the development cycle helps to identify problems earlier,
long before any code is developed, thus helping to avoid expensive
later rework.

As well as supporting verification of designs and implementa-
tions, the formal modeling languages used in verification by con-
struction encourage a rational design process. We contend that the
use of good abstractions and simple mathematical structures in
modeling, and reuse of modules with specifications can lead to
cleaner, more rational system architectures that are easier to verify

227



(and maintain) than architectures developed using less disciplined
approaches.

6.2 How is Verification by Construction Achieved?

Verification by construction can be achieved by having a formal
framework in which models are constructed at multiple levels of
abstraction; each level of abstraction is refined by the one below,
and this refinement relationships is documented by an abstraction
relation (typically in the form of a gluing invariant) [1, 3, 14, 42,
61, 77, 83, 100, 101, 102, 128]. The highest levels of abstraction
are used to express the required behavior in terms of the problem
domain. The closer it is to the problem domain, the easier it is to
validate against the informal requirements, i.e., ensure that it is the
right specification. The lowest level of abstraction corresponds to
either an implementation, a specification from which an efficient
implementation can be derived automatically, or to a specification
realized in hardware.

Also critical in this framework are mechanisms for composing
and decomposing models. Composition can be useful for building
up specifications by combining models incorporating different re-
quirements. Decomposition is important for relating system models
to architectures of subsystem models and also for subsequent sepa-
rate refinement of subsystems [5, 2, 15, 16, 30, 43].

Ensuring that a model M2 refines or implements M1 requires
bridging the abstraction gap between them. Typically there is a
large abstraction gap between a good formal specification, i.e., one
that is easy to validate against the requirements, and an efficient
implementation.

Verification by construction does not require that such abstrac-
tion gaps be bridged by a series of (small) transformations, done
at the time that M2 is derived from M1, each step of which guar-
antees refinement. While this kind of transformational approach
is valuable [61, 100, 101, 102], verification by construction also
includes a posit-and-prove approach, in which the developer pro-
vides both M1 and M2 and uses tools to verify that M1 is refined
by M2 [1, 3, 77, 83]. The difference is not great, especially since
in the transformational approach, the transformation applied might
result in the generation of side conditions that will need to be veri-
fied. Conversely, if the abstraction gap between M1 and M2 is small
enough, or if the properties involved are limited, a tool can generate
proof obligations that can be verified, perhaps automatically using
model checkers or powerful theorem provers. Tools are important
for the transformational approach, but tools are also useful in the
posit-and-prove approach, for example, to help one discover ancil-
lary properties, such as invariants.

Through refinement it is often possible to model and reason
about how a strategy solves a problem in an abstract way using
abstract specifications that encapsulate algorithms and data struc-
tures. At higher levels of abstraction one can focus reasoning on
design choices closely related to the problem domain and less on
coding details. These abstract specifications can then be optimized
through refinements that select implementation modules, or that in-
troduce more concrete algorithms and data structures. Reasoning
about these optimizing refinements no longer requires reasoning
about the original problem as this will have been dealt with by the
earlier refinement.

In this way, by keeping the models as abstract as possible at
each level, or by reusing modules, one will often have simpler
proof obligations to discharge. This contrasts with the situation
that obtains when one verifies a program (without annotations)
and without intermediate refinement steps. In doing such a proof,
one must reason about a number of issues simultaneously: the
problem to be solved, the data structures, and the algorithms used
in the solution. Using a series of refinement steps helps factor out
and modularize such decisions, allowing them to be dealt with

separately. This often simplifies proof obligations and helps make
reasoning made more manageable.

When using refinement, one does not necessarily distinguish
between properties and models. Essentially we are working with
models in a modeling language and the important property to be
proved of some model M2 is that it is a refinement of some other
model M1. So the answer to the question “what properties should
we prove of a model?” is “those properties that help show that it
is a refinement of its abstraction.” For the most abstract models,
the important property is that they satisfy the requirements of the
problem domain. This is an informal check which can sometimes
be aided by checking required ancillary properties. With a refine-
ment approach the “creative” input in a development is a collection
of explicit models at different levels of abstraction. The invention
of ancillary properties is dictated by the need to prove refinement
between these explicit models. Creating models at different levels
of abstraction, or reusing previously-available modules with speci-
fications, fits well with an engineering approach.

6.3 The Goal of Verification by Construction

Existing theories, languages, proof techniques and tools for veri-
fication by construction need to be evolved to address more fully
questions Q1, Q3, and Q4 above. This will lead to powerful tools
that will:

• Support the construction of models (specifications, designs,
programs) at multiple levels of abstraction,

• Support the verification of refinement between models,

• Support the verification of modules built from other modules,
and

• Support verified construction of complex systems consisting of
software and environments in which software operates.

The feasibility of these results will be demonstrated through
their application to the development of complex software systems.
The long term directions described later are intended to lead toward
these goals. We also suggest some short-term directions which can
build immediately on existing work in the area and will contribute
to elaboration of the longer term problems and their solutions.

6.4 Short-Term Research Directions

The following are some short-term (5-7 year) research goals.

6.4.1 Range of Case Studies

Develop and open for scrutiny several case studies of verifica-
tion by construction, using existing techniques and tools. These
case studies should be selected from the class of verification prob-
lems considered for the grand challenge project, and might include
some of the overall project’s challenge problems. Some case stud-
ies should focus on verification of modules. In all cases, the stud-
ies will help identify particular areas for improvement in the ap-
proaches.

Researchers should consider developments in which not every
part of a design is mapped down to fresh code, rather some parts are
implemented by legacy systems. The specifications of the legacy
parts need not appear at the highest level, rather they could be intro-
duced in later refinement steps. The correctness of the overall sys-
tem implementation with respect to the abstract specification would
be conditional on the assumption that any legacy parts satisfy their
specification; an assumption whose discharge may be tackled by
other parts of the grand challenge.

Existing research projects and efforts have made requirements
documents and formal specifications available and these could be
used as starting points and built on further [95, 118, 132].

228



6.4.2 Links between tools

Build links between existing tools to support verification by con-
struction. In particular, build links between proof obligation gen-
erators for refinement checking (as found in B and Z for example)
and

• the latest powerful theorem provers, model checkers and SAT
solvers, and

• automated invariant generation tools (such as Daikon [48]).

Existing work that could be used as a basis for tool integration
work includes the Eclipse-based Rodin platform for refinement
[118] and the Community Z tools initiative [41].

These experiments will guide the long term direction of a uni-
fied tools framework for verification by construction.

6.4.3 Programming Language Mappings

Models at low levels of abstraction need to be converted to exe-
cutable software. The effective way of doing this is through tool-
supported mappings to existing programming languages such as
Ada, Eiffel, Java and C#. In the medium term these mappings
should be pragmatic and their soundness provided through informal
arguments. To increase confidence in the resulting code, the map-
pings should also generate appropriate formal annotations (e.g.,
SPARK, Eiffel, JML or Spec# assertions) from the models and an-
cillary properties. This allows the generated code and annotations
to be analyzed using existing program analysis tools. For some ap-
plications or domains it may be appropriate to consider mapping
low-level models direct to byte code by-passing the compiler. Since
the code generation problem is essentially the problem of program
generation, the research directions pointed out in Section 5 also ap-
ply to this problem.

Examples of automated mapping of models to code are found
in AtelierB [35], which supports generation of C and Ada code
from low level B models, and the B-Toolkit [13], which supports
generation of C code from low level B models.

6.5 Long-Term Research Directions

The following are some long-term (8-15 year) research directions
in the verification by construction approach.

6.5.1 Evolution + Refinement

Refinement is never purely top down from most to least abstract,
because it is difficult to get the abstract model precisely right.
One usually starts with an idealistic abstract model because that
is easy to define. As refinement proceeds and more architectural
and environmental details are addressed it often becomes clearer
how the ideal abstract model needs to be modified to reflect reality
better. Modifications to some level of abstraction will ripple up
and down the refinement chain. This is not a weakness of the
refinement approach per se, rather a reflection of the reality of
engineering of complex systems. The theories, languages, proof
techniques and tools need to support evolution of designs during
and after development with minimal effort.

6.5.2 Complex system design

Control systems, interactive systems, and distributed systems in-
volve multiple agents (users, environments, new programs, legacy
code) all of which contribute to the correctness of a system. Individ-
ually the agents may be very complex, so reasoning about compo-
sitions of agents in all their gory detail may be infeasible. Instead,
there is evidence that it will be feasible to reason about complex
systems through good use of abstraction, refinement and module
composition [31, 32, 60].

The extent to which one must consider the operating environ-
ment when developing software depends on where one draws the
boundaries of the system. To reason about the validity of any fault
tolerance mechanisms, it is useful to include some abstraction of
the environment in the formal models in order to verify the effec-
tiveness of these mechanisms. For example, when reasoning about
the effectiveness of a security protocol, it is usual to include some
abstraction of an attacker. The goal is not to implement the attacker,
rather it is to show that the protocol achieves its security goal even
in the presence of an attacker, under some assumptions about at-
tacker behavior. These assumptions about attacker behavior can be
encoded in the formal abstraction of the attacker.

6.5.3 Richer Refinement Theories

Within a particular framework there may be differing strengths
of refinement. A weaker notion might capture the preservation of
safety behavior, while stronger notions might capture preservation
of liveness and/or fairness.

Another important dimension is resource usage. A theory of
refinement should ideally allow one to prove tight bounds on re-
sources, while still permitting abstract reasoning. Specifications of
resource usage should also not require reverification when the com-
puting platform is changed.

The refinement relation should enjoy some form of transitivity.
Refinement is based on comparing models according to some no-
tion of what can be observed about them, and it is useful to be able
to modify what can be observed at different levels of abstraction. In
particular, the interface to a system is usually described abstractly
and may need to be made much more concrete at decomposition or
implementation levels. In such cases, the observable behavior is not
directly comparable, but needs to be compared via some mapping
and transitivity of refinement is via composition of mappings.

6.5.4 Refinement Patterns

A halfway house between transformational and posit-and-prove
can be envisaged, where certain patterns of model and refinement
can be captured and used in the construction of refinements. This
is a more pragmatic idea than transformational refinement in that
the pattern might not guarantee the correctness of the refinement.
Instead M2 would be constructed from M1 by application of a
pattern and the correctness of the refinement would be proved in
the usual posit-and-prove way. Ideally the pattern should provide
much of the ancillary properties (e.g., invariants, tactics) required
to complete the proof, or at least an indication of what kinds of
properties might be needed.

The aim of using such patterns is to minimize verification effort
when applying refinement. A research goal is to identify such pat-
terns through a range of case studies and supporting the application
of the patterns with tools.

6.5.5 Integrated Tools Framework

To a large extent the theory needed to support verification by con-
struction already exists. The challenge is to provide a powerful
set of tools to support abstraction, refinement, decomposition and
proof. Tools should strive to achieve as much integration as possi-
ble and avoid isolation. Such tools should also exploit as much of
the existing work in theorem proving and model checking as pos-
sible and should be designed in anticipation of future advances in
these areas. The same can be said for using state-of-the-art meth-
ods in programming language design, program verification, and
automated program generation. As they evolve, the support tools
should be applied to the development of interesting software-based
systems.

229



7. Research in Programming Languages
This section was mainly written by Gary T. Leavens, Simon
Peyton-Jones, Dale Miller, and Aaron Stump.

7.1 Assumptions and Scope

In this section we assume that imperative languages are of interest.
This is not meant to exclude research on other paradigms. For
example, functional languages and domain-specific languages each
have their own advantages for verification.

Also, this roadmap assumes that verifying a compiler (or other
programming language tools) is not a goal of the grand challenge.
This is not to say that researchers in programming languages are
not concerned about correctness of the tools they produce. On the
contrary, it is standard, for example, for all type systems in pro-
gramming language research papers to come with a formal proof of
correctness. (The recent POPLmark challenge calls for such proofs
to be written in machine-checkable form [12].) However, it seems
likely that such verification problems will be outside the empha-
sized areas of the grand challenge.

7.2 Programming Language Approaches to Verification

Aside from using refinement to derive programs that are “correct by
construction,” program generation (including certifying compilers
[103]), and direct use of semantics4 we know of the following main
approaches that directly aid the verification of software.

7.2.1 Type systems

Types are weak specifications [72] that are automatically checked
by compilers.

Type systems are a long-standing topic of interest in program-
ming language research. Early work in type theory [38, 114]
showed how dependent types allow a type system to express com-
plete functional specifications as well as constructive proofs of
program correctness, at many levels of detail. Examples of depen-
dently typed programming languages where this idea is explored
include ATS, RSP1, Ωmega, Epigram, Cayenne, and Martin-Löf
type theory [11, 34, 96, 115, 125, 142]. Work by Voda has similar
goals [139].

7.2.2 Program Analysis

Program analysis gathers information that safely approximates
what programs will do at runtime. Static type systems are a special
case of static analysis [109], but program analysis is not restricted
to obtaining information about types. Like type checking, program
analysis can be seen as a way of doing weak verification; for ex-
ample shape analysis can be seen as a way of “computing a safe
approximation to a statement’s strongest postcondition” [121, p.
284].

Many interesting formal methods tools have checked various
properties using static analyses of various sorts. Examples include
partial correctness (checked by, e.g., TVLA [88]), conformance to
API protocols (checked by SLAM [17]), memory safety (checked
by Prefix and Prefast [85] and LCLint [49]),and absence of race
conditions (checked by Autolocker [97]). (There are also several
systems that look for error patterns, including Metal [47] and Find-
bugs [71].)

7.2.3 Assertions

Assertions are logical properties of a system, usually expressed in
some extension of predicate logic or temporal logic. Assertions

4 Besides use of Hoare logic, or “axiomatic semantics” [65] one can
also specify and verify software using denotational [122] or operational
semantics [10]. However, these styles are not typically well-suited for
specification purposes, at least for imperative programs.

can specify post-conditions for methods, invariant properties for
objects, and protocols that API calls should obey.

There has also been a historical strand of work that directly
adds Hoare-style specification and verification to programming lan-
guages. Gypsy [7] and Alphard [64, 93, 124] are early examples.
The Euclid language [84, 92] was notable along these lines; Euclid
omitted or restricted several features of Pascal, as an aid to formal
verification. For example, Euclid introduced the notion of heap re-
gions as a way to get some control on aliasing, and also prohibited
overlap among the parameters to procedure calls. The SPARK sub-
set of Ada [18] continues this tradition. Perhaps the most successful
such language is Eiffel [98, 99], which takes a very pragmatic ap-
proach to specification and focuses on run-time assertion checking.
The ESC system [44] is an interesting hybrid, since it uses asser-
tions, but in some ways is more like a static analysis system.

7.3 Problems with Current Approaches

We see several overall problems with the above approaches to
directly aiding verification.

7.3.1 Effort Needed for Verification

Programmers are less likely to use a technique if it does not allow
them to suppress proofs or details.

For example, when using a dependent type system, the need
to provide proofs of correctness along with executable code lim-
its the appeal of dependent type systems, since this demands sub-
stantially more work than needed in currently popular program-
ming languages, and the proofs are not optional. A potential way
out of this difficulty for dependent types is shown by Dependent
ML, which, while also based on dependent types, has the goal
of checking properties without programmer-supplied proofs [146].
Thus one research direction would be to explore how to gain the ad-
vantages of dependent type systems without the need to explicitly
supply proofs.

Similarly, when using assertions, one often has to specify many
properties in addition to the property of interest. The Bandera sys-
tem [39] and SLAM [17] both use slicing [135, 141] before model
checking to avoid state space explosion. An interesting research di-
rection would be to use slicing more extensively in other kinds of
verification.

7.3.2 Lack of Extensibility

Current programming languages often fix a particular notation and
verification technique, and do not allow users to modify or add to it.
For example, it is hard to find a single level of specification beyond
types that all programmers would agree is worthwhile. Indeed one
might criticize most languages where types play a central role for
taking an important concept and freezing it. That is, if types are so
important, why do languages (like Java, Standard ML, and Haskell)
allow for just one type system? It would seem more valuable to first
see a programming language as describing an untyped computation
and then allow for various ways to infer the various kinds of
typings as well as other static properties. Also, types are open-
ended: there is no one best type system, and researchers will always
be making new proposals for better systems. Similar remarks apply
to assertion languages and static analysis frameworks.

Thus a research direction would be to find a more open archi-
tecture for programming language definition (and implementation)
that allows the use of multiple type systems, multiple static analy-
ses and multiple different kinds of assertions. Ideally, it would be
best to allow these different kinds of annotations to interact with
each other. For example, it would be great if specifications written
using assertions could refer to properties (such as what variables
are assigned) that are covered by a static analysis.

230



7.4 Short-Term Research Directions

In this section we describe some ideas for research directions in
the short term (5-7 years), with two goals: directly supporting
specification and verification, and eliminating much of its drudgery
by eliminating common problems.

7.4.1 Supporting Specification and Verification Annotations

Basic language features for supporting specification and verifica-
tion have been discussed above, in the section on specification lan-
guages. These should be investigated for their interactions with pro-
gramming languages and systems. For example to what extent can
optimizing compilers and other kinds of static analysis make use of
such information?

There is one important aspect of programming language designs
that could greatly ease specification and verification, which is to
design languages so that expressions (or at least some identifiable
subset of expressions) have no side effects. Side effects in expres-
sions make it difficult to follow Eiffel’s lead in using programming
language expressions in assertions [98, 99]. While some languages
in the Pascal family (including Euclid [84] and Ada [74]) already
do this, based on Pascal’s separation of functions and procedures
[76, 145], it deserves to be more widely followed.

Tools for programming languages could also be designed to
better support specification and verification annotations. Ideally
annotations should be provided in an open manner, which would
allow users and tool providers to add to the set of annotations.
Meta-information such as the annotations of Java and C# are useful
for this purpose, but are weak in that they do not allow full use
of the language’s expression syntax and are not hierarchical, and
thus do not support rich syntax for specification. Furthermore, to
support typing and verification, annotations must be permitted at
all levels of syntax; for example, adding annotations to statements
is necessary to specify the effect of a loop.

Another way that programming languages could aid working
with annotations is if they would allow annotations to substitute
for code. That is, a tool should be able to manipulate a program
in which some parts are not implemented in the language, but are
merely specified with some annotations. Achieving this kind of
“specification closure” would help researchers working on com-
pilers and interface specification.

7.4.2 Eliminating Drudgery in Specification and Verification

Programming language design can reduce the cost of specifica-
tion and verification by keeping the language simple, by automat-
ing more of the work (e.g., by propagating type information), and
by eliminating common errors. (Eliminating common errors would
also help make programs more reliable, even if programmers do not
use verification techniques.) Historical examples include elimina-
tion of dangling references by the use of garbage collection, encap-
sulation of iteration idioms (such as map or for loops), type systems
that avoid null pointer dereferences (as in Lisp or CLU [90] and
the work of Fähndrich and Leino [50]), and SPARK’s elimination
of conditional data flow errors (such as reading from uninitialized
variables) [18].

It seems like a fruitful research direction to try to eliminate other
common errors, such as array indexing errors, perhaps by using
dependent types or by using modulo arithmetic to map all integers
back to defined array elements.

It is perhaps also useful to look closely at verification technol-
ogy and to see what features of programming languages cause the
most trouble for verification efforts. Following the lead of Euclid
[84, 92], and SPARK [18], it may be interesting to try to design lan-
guages (or subsets) without such features. Another way of putting
this research question is: what features that are not in languages

like SPARK can now be handled without causing difficulty for ver-
ification?

Some common errors may not be problems with language itself,
but may be problems with use of libraries or simply mistakes that
programmers commonly make. Can rules for automatically find-
ing such common errors, as is done in Metal [47] and Findbugs
[71], be added to a programming language, under the control of
tool builders or users? One simple direction for achieving allowing
such extensions may be to add features like ������� ����� and
������� ���	
	� from AspectJ [9, 80], although such mecha-
nisms may be too simple to handle all the kinds of bugs detected
by such tools.

7.5 Long-Term Directions

In the longer term (8-15 years), one can contemplate more integra-
tion instead of just promoting extensible tools to aid specification
and verification.

7.5.1 Integration of Tools and Languages

Make the programming language’s compiler a platform that makes
it easier to build and integrate multiple specification and verifica-
tion tools. Eclipse may be an example of the kind of development
platform that is headed in the right direction, but it would need to
be substantially enhanced to allow for the addition of multiple tools
and to support their integration.

7.5.2 More Integration of Types and Specifications

Another goal is to find potential “sweet spots” that are intermediate
between full functional (or control) specifications and type systems.
Dependent types might be helpful as a technology for verification
of such partial specifications, but they must be made much more
accessible to programmers.

7.5.3 Integration of Rich Static Checking

Support the integration of rich static checking (verification of
partial specifications) in the programming language. Researchers
could explore taking some existing programming languages and
providing support for flexible deduction to be allowed on source
code and any assertions that are associated with that code (either in
the code as type declarations, loop invariants, etc.) or separately.

Allow for possible community-based inference to be performed
on a module-by-module level. Provide the elements of a computa-
tional logic that could help in performing basic source-level manip-
ulations such as substitutions and unification. An example of such
a scheme can be found in the work of the Ciao system [63].

8. Conclusions
This roadmap has described ways that researchers in four areas —
specification languages, program generation, correctness by con-
struction, and programming languages — might help the verified
software grand challenge project. Researchers in these areas need
challenge problems to be described in many different ways, includ-
ing requirements, source code, and test cases.

In the short term, a common research goal shared by all four
areas is building extensible tool frameworks that would allow re-
searchers to more easily implement specification and verification
tools. This could lead to the exploration of more research ideas and
to more careful evaluation of these ideas.

In the long term, researchers can try to consolidate the best of
these ideas into new theories and tools.

Acknowledgments
Thanks to the members of IFIP Working Group 2.3 (Program-
ming Methodology) for discussions and for comments on an earlier

231



draft of this material, presented at the Brugges meeting in March
2006. Special thanks to Michael Jackson (the one involved in IFIP
WG 2.3) for his advice on narrowing the scope of this roadmap:
“specialize!” (Yes, it was even broader previously.) Thanks to
Shriram Krishnamurthi for several discussions and suggestions.
Thanks to Rod Chapman for comments, ideas, and corrections
relating to SPARK. Thanks also to the participants at the SRI
Mini-Conference on Verified Software (April 1–2, 2006) and to
the Dagstuhl workshop on “The Challenge of Software Verifica-
tion” (July 10–13, 2006) for additional comments and suggestions.
Thanks to the US National Science Foundation for grants sup-
porting these meetings and for supporting, in part, the work of
Leavens (CCF-0428078 and CCF-0429567), Fisler (CCR-0132659
and CCR-0305834), Sitaraman (CCR-0113181), and Stump (CCF-
0448275).

References
[1] M. Abadi and L. Lamport. The existence of refinement mappings.

Technical Report 29, Digital Equipment Corporation, Systems
Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, Aug.
1988. A shorter version appeared in Proceedings of the LICS
Conference, Edinburgh, Scotland, July 1988.

[2] M. Abadi and L. Lamport. Composing specifications. ACM
Transactions on Programming Languages and Systems, 15(1):73–
132, Jan. 1993.

[3] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, Aug. 1996.

[4] J.-R. Abrial, E. Börger, and H. Langmaack, editors. Formal Methods
for Industrial Applications, Specifying and Programming the Steam
Boiler Control, volume 1165 of Lecture Notes in Computer Science.
Springer-Verlag, 1996.

[5] J.-R. Abrial and S. Hallerstede. Refinement, decomposition,
and instantiation of discrete models: Application to Event-B.
Fundamenta Informaticae, XXI, 2006.

[6] Ádám Darvas and P. Müller. Reasoning about method calls in
interface specifications. Journal of Object Technology, 5(5):59–85,
June 2006.

[7] A. L. Ambler, D. I. Good, J. C. Browne, W. F. Burger, R. M. Choen,
C. G. Hoch, and R. E. Wells. Gypsy: a language for specification and
implementation of verifiable programs. ACM SIGPLAN Notices,
12(3):1–10, Mar. 1977. Proceedings of the ACM Conference on
Language Design for Reliable Software.

[8] K. Araki, S. Gnesi, and D. Mandrioli, editors. FME 2003: Formal
Methods, International Symposium of Formal Methods Europe,
Pisa, Italy, September 8-14, 2003, Proceedings, volume 2805 of
Lecture Notes in Computer Science. Springer-Verlag, 2003.

[9] AspectJ Team. The AspectJ programming guide. Available from
����������	�
������
����� , Oct. 2004.

[10] E. Astesiano. Inductive and operational semantics. In E. J. Neuhold
and M. Paul, editors, Formal Description of Programming Concepts,
IFIP State-of-the-Art Reports, pages 51–136. Springer-Verlag, New
York, NY, 1991.

[11] L. Augustsson. Cayenne — a language with dependent types.
In Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP ’98), volume 34(1) of ACM
SIGPLAN Notices, pages 239–250. ACM, June 1999.

[12] B. E. Aydemier, A. Bohannon, M. Fairbairn, J. N. Foster, B. C.
Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and
S. Zdancewic. Mechanized metatheory for the masses: The
POPLmark challenge. In Theorem Proving in Higher Order Logics:
18th International Conference, Lecture Notes in Computer Science.
Springer-Verlag, June 2005.

[13] B-Core (UK) Limited. B-toolkit manuals.
�������������������� , 1999.

[14] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Texts in Computer Science. Springer-Verlag,
1998.

[15] R. J. R. Back. Refinement calculus, part II: Parallel and reactive
programs. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg,
editors, Stepwise Refinement of Distributed Systems, LNCS 430.
Springer-Verlag, 1990.

[16] R. J. R. Back and K. Sere. Stepwise refinement of parallel
algorithms. Science of Computer Programming, 13(2-3):133–180,
1990.

[17] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. In Conference Record of POPL’02:
The 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1–3, Portland, Oregon, Jan. 16–18,
2002.

[18] J. Barnes. High Integrity Software: The SPARK Approach to Safety
and Security. Addison Wesley, New York, NY, 2003.

[19] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and
W. Schulte. Verification of object-oriented programs with invariants.
Journal of Object Technology, 3(6):27–56, 2004.

[20] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. In G. Barthe, L. Burdy,
M. Huisman, J.-L. Lanet, and T. Muntean, editors, Construction and
Analysis of Safe, Secure, and Interoperable Smart devices (CASSIS
2004), volume 3362 of Lecture Notes in Computer Science, pages
49–69. Springer-Verlag, 2005.

[21] D. Batory. Multi-level models in model driven development,
product-lines, and metaprogramming. IBM Syst. J., 3, 2006.

[22] D. S. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. IEEE Transactions on Software Engineering,
30(6):355–371, June 2004.

[23] M. Becker, L. Gilham, and D. R. Smith. Planware II: Synthesis of
schedulers for complex resource systems. Technical report, Kestrel
Technology, 2003.

[24] M. Bidoit and P. D. Mosses. CASL User Manual. LNCS 2900 (IFIP
Series). Springer-Verlag, 2004.

[25] H.-J. Boehm. Side effects and aliasing can have simple axiomatic
descriptions. ACM Trans. Prog. Lang. Syst., 7(4):637–655, Oct.
1985.

[26] G. Booch. Growing the uml. Software and Systems Modeling,
1(2):157–160, Dec. 2002.

[27] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML tools
and applications. International Journal on Software Tools for
Technology Transfer, 7(3):212–232, June 2005.

[28] R. M. Burstall and J. A. Goguen. Putting theories together to make
specifications. In Fifth International Joint Conference on Artifical
Intelligence, MIT, Cambridge, Mass., volume 2, pages 1045–1058.
IJCAI-77, Department of Computer Science, Carnegie Mellon,
Pittsburgh, Aug. 1977.

[29] R. M. Burstall and J. A. Goguen. The semantics of CLEAR,
a specification language. In Abstract Software Specification,
Copenhagen Winter School, volume 86 of Lecture Notes in
Computer Science, pages 292–332. Springer-Verlag, New York,
NY, 1980. Also University of Edinburgh, Department of Computer
Science, Internal Report, CSR-65-80, Feb, 1980.

[30] M. J. Butler. Stepwise refinement of communicating systems. Sci.
Comput. Programming, 27(2):139–173, 1996.

[31] M. J. Butler. On the use of data refinement in the development of
secure communications systems. Formal Aspects of Computing,
14(1):2–34, 2002.

[32] M. J. Butler, E. Sekerinski, and K. Sere. An action system approach
to the steam boiler problem. In Abrial et al. [4], pages 129–148.

[33] J. Charles. Adding native specifications to JML. In Workshop on

232

http://eclipse.org/aspectj
http://www.b-core.com


Formal Techniques for Java-like Programs (FTfJP), July 2006.

[34] C. Chen and H. Xi. Combining programming with theorem proving.
In Proceedings of the 10th International Conference on Functional
Programming (ICFP05), Sept. 2005.

[35] ClearSy. Atelier B, user and reference manuals.
��������	�������������� , 1996.

[36] A. Coglio and C. Green. A constructive approach to correctness,
exemplified by a generator for certified Java Card appplets. In Proc.
IFIP Working Conference on Verified Software: Tools, Techniques,
and Experiments, Oct. 2005.

[37] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A
certifying compiler for Java. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and
Implementation, pages 95–107, New York, NY, USA, 2000. ACM
Press.

[38] R. L. Constable. Assigning meaning to proofs: a semantic basis
for problem solving environments. In M. Broy, editor, Constructive
Methods in Computing Science, volume F55 of NATO ASI Series,
pages 63–91. Springer-Verlag, New York, NY, 1989.

[39] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,
Robby, and H. Zheng. Bandera: Extracting finite-state models
from Java source code. In Proceedings of the 22nd International
Conference on Software Engineering, pages 439–448, New York,
NY, June 2000. ACM Press.

[40] K. Czarnecki and U. W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[41] CZT Partners. Community Z tools.
�����������
������������� , 2006.

[42] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-
Oriented Proof Methods and their Comparison, volume 47 of
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, New York, NY, 1998.

[43] W. P. de Roever, H. Langmaack, and A. Pnueli, editors. Compo-
sitionality: The Significant Difference, International Symposium,
COMPOS’97, Bad Malente, Germany, September 8-12, 1997. Re-
vised Lectures, volume 1536 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[44] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended
static checking. SRC Research Report 159, Compaq Systems
Research Center, 130 Lytton Ave., Palo Alto, Dec 1998.

[45] S. H. Edwards, W. D. Heym, T. J. Long, M. Sitaraman, and B. W.
Weide. Part II: Specifying components in RESOLVE. ACM
SIGSOFT Software Engineering Notes, 19(4):29–39, Oct 1994.

[46] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics, volume 6 of EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, New York, NY,
1985.

[47] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written compiler
extensions. In Proc. 4th Symp. OS Design and Int’l (OSDI 2000),
pages 1–16. ACM, 2000.

[48] M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, 27(2):99–123, Feb.
2001.

[49] D. Evans. Static detection of dynamic memory errors. ACM
SIGPLAN Notices, 31(5):44–53, May 1996. Proceedings of the
1996 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI).

[50] M. Fähndrich and K. R. M. Leino. Declaring and checking
non-null types in an object-oriented langauge. In OOPSLA ’03:
Proceedings of the 18th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,
volume 38(11) of ACM SIGPLAN Notices, pages 302–312, New
York, NY, Nov. 2003. ACM.

[51] K. Finney. Mathematical notation in formal specification: Too dif-
ficult for the masses? IEEE Transactions on Software Engineering,
22(2):158–159, Feb. 1996.

[52] B. Fischer and J. Schumann. Generating data analysis programs
from statistical models. Journal of Functional Programming,
13(3):483–508, 2003.

[53] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant
for ESC/Java. In J. N. Oliveira and P. Zave, editors, FME 2001:
Formal Methods for Increasing Software Productivity, volume 2021
of Lecture Notes in Computer Science, pages 500–517. Springer,
Mar. 2001.

[54] K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer.
Principles of OBJ2. In Conference Record of the Twelfth Annual
ACM Symposium on Principles of Programming Languages, pages
52–66. ACM, Jan. 1985.

[55] J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative
Programs. MIT Press, Cambridge, MA, 1996.

[56] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra
approach to the specification, correctness and implementation
of abstract data types. In R. T. Yeh, editor, Current Trends in
Programming Methodology, volume 4, pages 80–149. Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1978.

[57] J. Guttag and J. J. Horning. The algebraic specification of abstract
data types. Acta Informatica, 10(1):27–52, 1978.

[58] J. V. Guttag, J. J. Horning, S. Garland, K. Jones, A. Modet, and
J. Wing. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, New York, NY, 1993.

[59] K. Havelund and T. Pressburger. Model checking Java programs
using Java PathFinder. International Journal on Software Tools for
Technology Transfer, 2(4), Apr. 2000.

[60] I. J. Hayes, M. Jackson, and C. B. Jones. Determining the
specification of a control system from that of its environment.
In Araki et al. [8], pages 154–169.

[61] E. C. R. Hehner. A Practical Theory of Programming. Texts and
Monographs in Computer Science. Springer-Verlag, 1993. Available
from ������������
������������������������ .

[62] E. C. R. Hehner. Formalization of time and space. Formal Aspects
of Computing, 10:290–306, 1998.

[63] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-García.
Integrated program debugging, verification, and optimization using
abstract interpretation (and the Ciao system preprocessor). Sci.
Comput. Program., 58(1-2):115–140, 2005.

[64] P. Hilfinger, G. Feldman, I. K. Robert Fitzgerald, R. L. London,
K. V. S. Prasad, V. R. Prasad, J. Rosenberg, M. Shaw, and W. A. W.
(editor). (preliminary) an informal definition of Alphard. Technical
Report CMU-CS-78-105, School of Computer Science, Carnegie
Mellon University, 1978.

[65] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580,583, Oct. 1969.

[66] C. A. R. Hoare. Proof of correctness of data representations. Acta
Informatica, 1(4):271–281, 1972.

[67] C. A. R. Hoare, I. J. Hayes, H. Jifeng, C. C. Morgan, A. W. Roscoe,
J. W. Sanders, I. H. Sorensen, J. M. Spivey, and B. A. Sufrin. Laws
of programming. Commun. ACM, 30(8):672–686, Aug. 1987. See
corrections in the September 1987 CACM.

[68] C. A. R. Hoare, N. Shankar, and J. Misra, editors. Proc. IFIP
Working Conference on Verified Software: Tools, Techniques, and
Experiments, Zürich, Switzerland, Oct. 2005.

[69] T. Hoare. The verifying compiler: A grand challenge for computing
research. J. ACM, 50(1):63–69, Jan. 2003.

[70] T. Hoare, J. Misra, and N. Shankar. The IFIP working con-
ference on verified software: Theories, tools, experiments.
��������	����������� � , Oct. 2005.

233

http://tinyurl.com/lkj72
http://czt.sourceforge.net/
http://www.cs.utoronto.ca/~hehner/aPToP
http://tinyurl.com/nrhdl


[71] D. Hovemeyer. Simple and Effective Static Analysis to Find Bugs.
PhD thesis, University of Maryland, July 2005.

[72] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pages
479–490. Academic Press, Inc., New York, NY, 1980.

[73] R. Inc. Software Refinery, Mar. 2006.
�������������
��	������� .

[74] International Organization for Standardization. Ada 95 Reference
Manual. The Language. The Standard Libraries, Jan. 1995.
ANSI/ISO/IEC-8652:1995.

[75] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel,
and H. Tews. Reasoning about Java classes (preliminary report).
In OOPSLA ’98 Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 329–340. ACM, Oct. 1998.

[76] K. Jensen and N. Wirth. PASCAL User Manual and Report (third
edition). Springer-Verlag, New York, NY, 1985. Revised to the ISO
Standard by Andrew B. Mickel and James F. Miner.

[77] C. B. Jones. Systematic Software Development Using VDM.
International Series in Computer Science. Prentice Hall, Englewood
Cliffs, N.J., second edition, 1990.

[78] I. T. Kassios. A Theory of Object-Oriented Refinement. PhD thesis,
University of Toronto, 2006. To appear.

[79] Kestrel Development Corporation. Specware System and documen-
tation, 2004. �����������
���������� .

[80] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In J. L. Knudsen, editor,
ECOOP 2001 — Object-Oriented Programming 15th European
Conference, Budapest Hungary, volume 2072 of Lecture Notes in
Computer Science, pages 327–353. Springer-Verlag, Berlin, June
2001.

[81] J. Krone, W. F. Ogden, and M. Sitaraman. Modular verification of
performance constraints. In ACM OOPSLA Workshop on Specifica-
tion and Verification of Component-Based Systems (SAVCBS), pages
60–67, 2001.

[82] L. Lamport. A simple approach to specifying concurrent systems.
Commun. ACM, 32(1):32–45, Jan. 1989.

[83] L. Lamport. The temporal logic of actions. ACM Trans. Prog. Lang.
Syst., 16(3):872–923, May 1994.

[84] B. W. Lampson, J. L. Horning, R. L. London, J. G. Mitchell, and
G. J. Popek. Report on the programming language Euclid. Technical
Report CSL-81-12, Xerox Palo Alto Research Centers, Oct. 1981.
Also SIGPLAN Notices, 12(2), February, 1977.

[85] J. R. Larus, T. Ball, M. Das, R. DeLine, M. Fähndrich, J. Pincus,
S. K. Rajamani, and R. Venkatapathy. Righting software. IEEE
Software, 21:92–100, 2004.

[86] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How
the design of JML accommodates both runtime assertion checking
and formal verification. Science of Computer Programming, 55(1-
3):185–208, Mar. 2005.

[87] K. R. M. Leino and P. Müller. Object invariants in dynamic
contexts. In M. Odersky, editor, European Conference on Object-
Oriented Programming (ECOOP), volume 3086 of Lecture Notes in
Computer Science, pages 491–516. Springer-Verlag, June 2004.

[88] T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static
analyses. In J. Palsberg, editor, Static Analysis, 7th International
Symposium, SAS 2000, Proceedings, volume 1824 of Lecture Notes
in Computer Science, pages 280–301. Springer, 2000.

[89] B. Liskov and J. Guttag. Abstraction and Specification in Program
Development. The MIT Press, Cambridge, Mass., 1986.

[90] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction
mechanisms in CLU. Commun. ACM, 20(8):564–576, Aug. 1977.

[91] B. Liskov and W. Weihl. Specifications of distributed programs.

Distributed Computing, 1:102–118, 1986.

[92] R. L. London, J. V. Guttag, J. J. Horning, B. W. Lampson, J. G.
Mitchell, and G. J. Popek. Proof rules for the programming language
Euclid. Acta Informatica, 10(1):1–26, 1978.

[93] R. L. London, M. Shaw, and W. A. Wulf. Abstraction and
verification in Alphard: a symbol table example. Technical report,
Information Sciences Institute, USC, Dec. 1976.

[94] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, New York, NY, 1992.

[95] Matisse Partners. Matisse: Methodologies and technologies for
industrial strength systems engineering.
��������������	

��!	���	!����� , 2003.

[96] C. McBride and J. McKinna. The view from the left. Journal of
Functional Programming, 14(1), 2004.

[97] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
synchronization inference for atomic sections. In Proceedings
of the 33th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 06), volume 41, 1 of ACM
SIGPLAN Notices, pages 346–358, New York, Jan. 2006. ACM
Press.

[98] B. Meyer. Eiffel: The Language. Object-Oriented Series. Prentice
Hall, New York, NY, 1992.

[99] B. Meyer. Object-oriented Software Construction. Prentice Hall,
New York, NY, second edition, 1997.

[100] C. Morgan. Programming from Specifications: Second Edition.
Prentice Hall International, Hempstead, UK, 1994.

[101] C. Morgan and T. Vickers, editors. On the refinement calculus.
Formal approaches of computing and information technology series.
Springer-Verlag, New York, NY, 1994.

[102] J. B. Morris. Programming by successive refinement of data
abstractions. Software—Practice & Experience, 10(4):249–263,
Apr. 1980.

[103] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system
F to typed assembly language. ACM Trans. Prog. Lang. Syst.,
21(3):527–568, May 1999.

[104] P. Müller. Modular Specification and Verification of Object-Oriented
Programs, volume 2262 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[105] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular
specification of frame properties in JML. Concurrency and
Computation: Practice and Experience, 15(2):117–154, Feb. 2003.

[106] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular
invariants for layered object structures. Technical Report 424,
ETH Zurich, Mar. 2005.

[107] A. Narayanan and G. Karsai. Towards verifying model transforma-
tions. In R. Bruni and D. Varró, editors, 5th International Workshop
on Graph Transformation and Visual Modeling Techniques, Vienna,
pages 185–194, Apr 2006.

[108] G. C. Necula. Proof-carrying code. In Conference Record of POPL
97: The 24TH ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Paris, France, pages 106–119, New
York, NY, Jan. 1997. ACM.

[109] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

[110] J. W. Nimmer and M. D. Ernst. Static verification of dynamically
detected program invariants: Integrating Daikon and ESC/Java. In
Proceedings of RV’01, First Workshop on Runtime Verification.
Elsevier, July 2001.

[111] T. Nipkow, L. Paulson, and M. Menzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[112] T. Nipkow, D. von Oheimb, and C. Pusch. μJava: Embedding
a programming language in a theorem prover. In F. L. Bauer

234

http://www.reasoning.com/
http://www.specware.org/
http://www.matisse.qinetiq.com/


and R. Steinbrüggen, editors, Foundations of Secure Computation,
volume 175 of NATO Science Series F: Computer and Systems
Sciences, pages 117–144. IOS Press, 2000.

[113] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul,
editor, ECOOP ’98 – Object-Oriented Programming, 12th European
Conference, Brussels, Belgium, volume 1445 of Lecture Notes in
Computer Science, pages 158–185. Springer-Verlag, July 1998.

[114] B. Nordström and K. Peterson. Types and specifications. In R. E. A.
Mason, editor, Information Processing 83, pages 915–920. Elsevier
Science Publishers B.V. (North-Holland), Sept. 1983. Proceedings
of the IFIP 9th World Computer Congress, Paris, France.

[115] B. Nordström, K. Peterson, and J. M. Smith. Programming in
Martin-Lof’s Type Theory, volume 7 of International Series of
Monographs on Computer Science. Oxford University Press, New
York, NY, 1990.

[116] W. F. Ogden, M. Sitaraman, B. W. Weide, and S. H. Zweben. Part
I: The RESOLVE framework and discipline — a research synopsis.
ACM SIGSOFT Software Engineering Notes, 19(4):23–28, Oct.
1994.

[117] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the
design of PVS. IEEE Transactions on Software Engineering,
21(2):107–125, Feb. 1995.

[118] Rodin Partners. Rodin: Rigorous open development environment
for complex systems. �������� 	���
����������� , 2006.

[119] E. Rodríguez, M. B. Dwyer, C. Flanagan, J. Hatcliff, G. T.
Leavens, and Robby. Extending JML for modular specification
and verification of multi-threaded programs. In A. P. Black, editor,
ECOOP 2005 — Object-Oriented Programming 19th European
Conference, Glasgow, UK, volume 3586 of Lecture Notes in
Computer Science, pages 551–576. Springer-Verlag, Berlin, July
2005.

[120] G. Rose. Object-Z. In S. Stepney, R. Barden, and D. Cooper, editors,
Object Orientation in Z, Workshops in Computing, pages 59–77.
Springer-Verlag, Cambridge CB2 1LQ, UK, 1992.

[121] M. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Trans. Prog. Lang. Syst., 24(3):217–298,
May 2002.

[122] D. A. Schmidt. Denotational Semantics: A Methodology for
Language Development. Allyn and Bacon, Inc., Boston, Mass.,
1986.

[123] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 23–34,
1979.

[124] M. Shaw. ALPHARD: Form and Content. Springer-Verlag, New
York, NY, 1981.

[125] T. Sheard. Languages of the future. In D. Schmidt, editor, OOPSLA
’04: Proceedings of the 19th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,
volume 39(11) of ACM SIGPLAN Notices, New York, NY, Oct.
2004. ACM.

[126] M. Sitaraman, G. Kulczycki, J. Krone, W. F. Ogden, and A. L. N.
Reddy. Performance specifications of software components. In
Proceedings of the 2001 Symposium on Software Reusability (SSR-
01), volume 26, 3 of SSR Record, pages 3–10, New York, May 18–20
2001. ACM Press.

[127] M. Sitaraman, T. J. Long, B. W. Weide, E. J. Harner, and L. Wang.
A formal approach to component-based software engineering:
Education and evaluation. In Twenty Third International Conference
on Software Engineering, pages 601–609. IEEE, 2001.

[128] M. Sitaraman, B. W. Weide, and W. F. Ogden. On the practical need
for abstraction relations to verify abstract data type representations.
IEEE Transactions on Software Engineering, 23(3):157–170, Mar.
1997.

[129] D. R. Smith. KIDS – a semi-automatic program development
system. IEEE Transactions on Software Engineering, 16(9):1024–
1043, 1990.

[130] D. R. Smith. Mechanizing the development of software. In
M. Broy and R. Steinbrueggen, editors, Calculational System
Design, Proceedings of the NATO Advanced Study Institute, pages
251–292. IOS Press, Amsterdam, 1999.

[131] J. M. Spivey. The Z Notation: A Reference Manual. International
Series in Computer Science. Prentice-Hall, New York, NY, second
edition, 1992.

[132] S. Stepney, D. Cooper, and J. Woodcock. An electronic purse:
Specification, refinement, and proof. Technical monograph PRG-
126, Oxford University Computing Laboratory, July 2000.

[133] M. E. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and
I. Underwood. Deductive composition of astronomical software
from subroutine libraries. In A. Bundy, editor, 12th Conference on
Automated Deduction, volume 814 of Lecture Notes in Computer
Science. Springer-Verlag, 1994.

[134] Stratego documentation. ��������	������������" , Mar.
2006.

[135] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3:121–189, 1995.

[136] D. E. Turk, R. B. France, B. Rumpe, and G. Georg. Model-driven
approaches to software development. In OOIS Workshops, pages
229–230, 2002.

[137] J. van den Berg and B. Jacobs. The LOOP compiler for Java and
JML. In T. Margaria and W. Yi, editors, Tools and Algorithms for
the Construction and Analysis of Software (TACAS), volume 2031
of Lecture Notes in Computer Science, pages 299–312. Springer-
Verlag, 2001.

[138] A. van Lamsweerde. Requirements engineering in the year 00:
A research perspective. In Proceedings of the 22nd International
Conference on Software Engineering, pages 5–19, New York, NY,
June 2000. ACM Press.

[139] P. Voda. What can we gain by integrating a language processor with
a theorem prover. unpublished; available from the author’s web site,
2003.

[140] J. Warmer and A. Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison Wesley Longman, Reading, Mass.,
1999.

[141] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352–357, July 1984.

[142] E. Westbrook, A. Stump, and I. Wehrman. A language-based
approach to functionally correct imperative programming. In
Proceedings of the 10th International Conference on Functional
Programming (ICFP05), 2005.

[143] J. M. Wing. Writing Larch interface language specifications. ACM
Trans. Prog. Lang. Syst., 9(1):1–24, Jan. 1987.

[144] J. M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):8–24, Sept. 1990.

[145] N. Wirth. The programming language pascal. Acta Informatica,
1(1):35–63, 1971.

[146] H. Xi. Facilitating program verification with dependent types.
In Proceedings of the International Conference on Software
Engineering and Formal Methods, pages 72–81, 2003.

[147] P. Zave and M. Jackson. Four dark corners of requirements
engineering. ACM Transactions on Software Engineering and
Methodology, 6(1):1–30, Jan. 1997.

235

http://rodin.cs.ncl.ac.uk/
http://tinyurl.com/nr2c5

	Introduction
	Audience
	Motivation
	Limitations
	Outline

	Background
	Verification Problems
	Challenge problems

	Common Goal: Verifiable Artifacts
	Short Term: Extensible Languages and Tools
	Long Term: Unification

	Research in Specification Languages
	Need for Specification Languages
	Assumed Scope
	Background: Kinds of Specification Languages
	Short-Term Research Goals
	Open Languages and Tools
	Reasoning about Partial Specifications
	Refinement
	Modularity and Reuse
	Specification of Resources
	Interface Specifications

	Long-Term Research Goals
	Integration of Data and Control
	Traceability
	Tool Frameworks that Support Integration
	Interface Specification Language Design


	Research in Program Generation
	Background on Program Generation
	Relation to Model-Driven Development
	Motivation for Program Generation
	Problem: Verified Program Generation
	Problem: Scalability
	Short-Term Research Goals
	Formalizing Language Semantics
	Tool Development
	Certified Code Generation
	Transformation Patterns
	Better Algorithms to Aid in Program Generation

	Long-Term Research Goals in Program Generation
	Scalability
	Taxonomy of Proof-Generating Transformations
	Better Tools and Frameworks
	Factoring the Certification Process
	Allow Update of Running Systems
	More Manual Control


	Research in Correctness by Construction
	Motivation
	How is Verification by Construction Achieved?
	The Goal of Verification by Construction
	Short-Term Research Directions
	Range of Case Studies
	Links between tools
	Programming Language Mappings

	Long-Term Research Directions
	Evolution + Refinement
	Complex system design
	Richer Refinement Theories
	Refinement Patterns
	Integrated Tools Framework


	Research in Programming Languages
	Assumptions and Scope
	Programming Language Approaches to Verification
	Type systems
	Program Analysis
	Assertions

	Problems with Current Approaches
	Effort Needed for Verification
	Lack of Extensibility

	Short-Term Research Directions
	Supporting Specification and Verification Annotations
	Eliminating Drudgery in Specification and Verification

	Long-Term Directions
	Integration of Tools and Languages
	More Integration of Types and Specifications
	Integration of Rich Static Checking


	Conclusions

