
Open Mechanized Reasoning Systems:

a Preliminary Report⋆

Alessandro Armando1, Piergiorgio Bertoli3, Alessandro Coglio2

Fausto Giunchiglia3, Jose Meseguer4, Silvio Ranise1, and Carolyn Talcott5

1 DIST, Università di Genova – Via all’Opera Pia 13, 16145 Genova, Italy
2 Kestrel Institute – 3260 Hillview Avenue, Palo Alto, California 94304, U.S.A.

3 IRST (Institute for Scientific and Technological Research) – 38050 Trento, Italy
4 SRI International, 333 Ravenswood Av., Menlo Park, CA, USA

5 Computer Science Department, Stanford University, CA 94305-2140, USA

Abstract. It is widely recognised that the integration of different (sub)-
provers is a key issue in the construction of reasoning tools of practical
usage. Unfortunately experience shows that effective integration is very
difficult to achieve. The Open Mechanized Reasoning Systems (OMRS)
Project started in 1992 with the objective to design a formal framework
for the specification of state-of-the-art provers. The starting point of the
OMRS approach is to structure the specification of a system in a logic
component, a control component, and an interaction component. Crisply
separating the concerns of the three layers, results in clearer and better
specifications. The paper provides an informal and preliminary report of
the OMRS Project and briefly illustrates the application of the OMRS
specification framework to two challenge applications.

1 Introduction

It is widely recognised that the integration of different (sub-)provers is a key
issue in the construction of reasoning tools of practical usage. This objective has
been pursued by the automated reasoning community both (i) by embedding de-
cision procedures inside general purpose reasoning systems (see, e.g., [17, 5, 18])
and—more recently—(ii) by interconnecting different reasoning tools (possibly
implementing diverse reasoning paradigms) [12, 2, 6].

Experience shows that effective integration is very difficult to achieve. On the
one hand, a main difficulty is that most of the research on decision procedures is
focused on procedures delivering a ‘yes-or-no’ answer, whereas experience shows
that in order to achieve effective integration much more sophisticated function-
alities are required. On the other hand, the main problem with making existing
systems interoperate is that most provers are packaged as stand-alone software
with inadequately described interfaces. In both cases a fundamental problem is

⋆ Thanks to Paolo Pecchiari for his contributions to the initial development of the
OMRS Project. We are grateful to Enrico Giunchiglia for his encouragement and
stimulating discussions.

1



the lack of a comprehensive conceptual framework for specifying the functional-
ities provided/required by state-of-the-art systems accounting for the wide vari-
ety of notions occurring in existing systems such as, e.g., consequence relations,
annotations, control information, proof-strategies, incremental and restartable
computation and deduction, interaction protocols, and communication facilities.

The Open Mechanized Reasoning Systems (OMRS ) Project started in 1992
with the objective to design a formal framework for the specification of state-
of-the-art provers. The starting point of the OMRS approach is to structure the
specification of a system in a logic component, a control component, and an
interaction component, thereby suggesting the following equation:

OMRS = LOGIC + CONTROL + INTERACTION

Preliminary but significant results have been obtained in the application of
the OMRS framework for supporting (i) the definition and the development
of provers as open architectures usable in a “plug-and-play” fashion, and (ii)
the design and development of proof-checkable and customizable reasoning sys-
tems. We are also thinking of the formal synthesis from OMRS specifications of
provably correct, efficient, and re-usable reasoning systems.

This paper is intended to be a preliminary and informal report of the OMRS
Project. Space limitations prevent us from giving the details, but references to
the relevant publications are given. (A comprehensive and up to date description
as well as a list of the publications of the OMRS Project are available at [19].)

The paper is organized as follows. Section 2 provides the key ideas of the
OMRS specification framework. Section 3 illustrates how the OMRS framework
has been used to guide the re-engineering of acl2 [13] into a proof-checkable and
customizable reasoning tool. Section 4 illustrates a methodology which allows the
extraction and lifting of reasoning specialists integrated in existing systems into
reusable and implementation independent reasoning components to be used in
a “plug-and-play” fashion. Some final remarks are given in Section 5.

2 The OMRS Specification Framework

Starting from the consideration that any reasoning system, as such, performs de-
ductions within some logic(s), guided by some (more or less complex) heuristics,
and exhibits some interaction capabilities, an OMRS specification of a reason-
ing system is structured in a logic component, a control component, and an
interaction component. The logic component provides a description of the as-
sertions manipulated by the system and the elementary deductions upon them;
the control component allows for the specification of the strategies guiding the
construction of complex deductions out of the elementary ones; finally the in-
teraction component specifies how the system interacts with the external world
(including human users and other provers). Crisply separating the concerns of
the three layers, results in clearer and better specifications. This is an important
issue as it allows us to cope with the complexity of existing systems.



The logic component of an OMRS specification consists of a reasoning the-
ory (RTh) [11], containing a set of assertions (called sequents), a set of inference
rules, and possibly a set of constraints used for specifying applicability condi-
tions of the rules. Constraint manipulation is specified by means of another RTh
(whose sequents are constraints) which is said to be nested in the first one. Nest-
ing can take place up to an arbitrary level. In order to support schematic and
provisional reasoning, sequents and constraints of an RTh can be schematic (i.e.,
contain place-holders for unspecified pieces of syntax). Deductions are expressed
by labeled graphs, called reasoning structures, which generalize the notion of
proof tree by allowing representation of proof fragments, sharing of deductions,
explicit treatment of constraints and inferences on them, and arbitrary nesting
of reasoning structures.

As most successful provers are built by integrating various specialized mod-
ules (e.g., a rewriter and a decider for linear arithmetic), our framework provides
a composition operation over reasoning theories [10]. The RTh for the whole
system is obtained by composing those for the constituent modules. Our com-
position operation allows RThs to share some language, and guarantees that the
shared language and its meaning are preserved by the composition.

For the control component of an OMRS specification, it is necessary to specify
the non-logical (i.e., control) data structures manipulated by the systems (e.g.,
clause indexes, the set of procedures which have produced a certain sequent). We
do that by augmenting sequents with annotations encoding control information,
and lifting rules to deal with annotations (e.g., update of clause indexes). More
precisely, the control component includes an RTh, called annotated RTh, together
with an erasing mapping specifying how the annotated RTh can be mapped into
an RTh embodying the logic content of the annotated RTh. This approach gives
two major advantages. One is that the manipulation of heuristic information
is specified in a declarative way, and therefore clearly it shows (via the erasing
mapping) the underlying logical deduction. The other is that composition of
RThs lifts from the logic to the control component: the composition of annotated
RThs specifies how the various sub-systems share data structures carrying both
logical and control information.

Work is in progress to define a formalism to specify strategies of application of
annotated rules and the construction of the corresponding (annotated) reasoning
structures. Some preliminary work has been done in [9], where a tactical language
is employed to build tree-shaped reasoning structures.

Concerning the interaction component of an OMRS specification, this is
mostly work in progress. In any case, this component should specify primitives
through which a system can have a bidirectional interaction with the external
world, and should specify how primitives result in the activation of deduction
strategies specified in the control component. For instance, some systems sup-
port queries to add an axiom to their internal database, to prove a theorem, and
so on.

There is a strong connection between OMRS and rewriting logic [15, 14]. In
particular there is a close correspondence between the notions of rewrite theory



in rewriting logic and reasoning theory in the OMRS framework. Work is in
progress to make this connection precise [16]. A substantial benefit of this work
is that it will make tools for rewriting logic applicable to OMRS. Specifically the
Maude language [7] can serve as a formal notation for reasoning theories. Using
the Maude tool this allows easy prototyping of systems described by reason-
ing theories. The reflective capability of Maude [8] provides a means of defining
strategy languages, for describing and executing OMRS strategies, and for con-
structing and manipulating reasoning structures. Mappings between reasoning
theories and composition of reasoning theories can also be defined and executed
in Maude.

3 Building Flexible and Proof-Checkable Reasoning Tools

The OMRS specification framework has been used to guide the redesign of the
acl2 system [13] into a flexible and proof-checkable reasoning tool. The motiva-
tion for the case study (whose details can be found in [3]) is that, although acl2

is known as one of the most powerful and reliable provers available, its proofs do
not result into structured proof objects; thus, it is impossible to formally analyze
(e.g., check) its results as required in many critical applications. Furthermore,
we want the system to be easily customizable. Finally, by redesigning a state-of-
the-art prover through OMRS, we aimed at verifying both the expressivity and
the practical usability of the OMRS formalism.

The case study is focused on the top-level inference engine of the prover, i.e.
the waterfall1, but the fragment considered is complex enough to suggest that
the methodology can scale up to the redesign of the whole system. Following the
OMRS approach the data structures manipulated by the waterfall have been
turned into annotated sequents, and the inference processes have been modeled
as tactics working on annotated sequents and implementing rules of a suitably
defined annotated reasoning theory. Tactics are combined by means of a tactical
language similar in spirit to LCF’s, but suitably extended so to deal with the
reuse of sub-deductions. This required the design of an interpreter for the tactical
language, which has been embedded within the acl2 system.

From a methodological standpoint, the application of OMRS has required a
deep study of the structures and the processes invoked by the waterfall in order
to enforce a crisp distinction between the logic, the control and the interaction
aspects, which are deeply intertwined in the original code. We have been able
to reuse most of the original data structures, by providing mapping functions to
achieve the desired splitting between the aforementioned aspects. The approach
has been applied uniformly, starting from the OMRS rewriting of the acl2

processes as primitive annotated tactics, up to the compound tactical expression
representing the whole waterfall.

As a result of our effort, a partially OMRS-redesigned version of the acl2

prover has been implemented. Although a prototype, it constitutes a first experi-

1 The waterfall can be described as a recursive application of a chain of backward
heuristics called “processes”.



mental evidence of the feasibility of adopting the OMRS framework to (re-)design
complex systems, and provides some interesting indications regarding to which
degree OMRS achieves its aims. The prototype is capable to present the results
of a successful deduction by means of a reasoning structure. Several degrees of
flexibility in the presentation are possible; e.g., it is possible to choose the gran-
ularity of the presentation, or to hide the heuristic details of the proof, showing
only the logically relevant steps. The reasoning structure can be conveniently
displayed by means of a graph editor, and is amenable to formal proof checking.
The prototype allows the user to customize the system by creating new primitive
and compound tactics, and by reusing the waterfall tactics.

4 “Plug-and-Play” Reasoning Components

The OMRS specification framework has been applied to define a methodology
for turning reasoning specialists embedded into existing systems into reusable
and implementation independent reasoning components (i.e. open architectures
capable of exchanging selected sets of logical services with the environment) to
be used in a “plug-and-play” fashion. This is an important objective for two
reasons. First, the development of a new reasoning specialist is a very difficult
and time consuming activity. Second, existing reasoning systems represent a
real cornucopia of powerful reasoning specialists. The methodology has been
tested by applying it to a challenge case study: the extraction of the linear
arithmetic procedure incorporated in nqthm [4]. (A detailed description of both
the methodology and the case study can be found in [1].)

The first step of the methodology amounts to modeling an existing reasoning
system as a set of reasoning specialists glued together by means of an integration
schema (i.e. a specification of the interplay between the reasoning specialists).
In our case study, this activity required a careful analysis of both the actual
implementation code and the report [5]. The OMRS specification framework
provided us with the conceptual background to carry out a rational reconstruc-
tion of the integration schema employed by Boyer and Moore. The second step of
the methodology amounts to lifting the reasoning specialists and the integration
schema into a set of reasoning components and an interaction schema, respec-
tively. A reasoning component is composed by a set of logical services together
with an interaction protocol. The interaction protocol governs the exchange of
the logical services between a reasoning component and the environment. In
our case study, this amounted to providing the linear arithmetic specialist with
interaction capabilities and an interaction protocol. Finally, we glued the reason-
ing component back with the rest of the system, thereby obtaining a combined
system as opposed to the (original) integrated one. A comparative experimental
analysis between the combined and the original system confirms the viability of
the approach of lifting embedded reasoning specialists to “plug-and-play” rea-
soning components. We are currently planning to interface the linear arithmetic
component we extracted from nqthm with other provers.



The case study we chose is of particular interest because of the following
three reasons. The first two stem from features shared by most of the decision
procedures embedded in state-of-the-art provers: incrementality and restartabil-
ity. Incrementality is used for efficiency reasons. Restartability is necessary to
support contextual rewriting. In fact the context stored into the linear arith-
metic procedure must be changed as soon as the focus of rewriting changes. The
third reason is that the interaction between the prover and the procedure is par-
ticularly sophisticated. In fact when the linear arithmetic procedure is asked to
establish whether a given linear facts is entailed by the context, it first tries to
prove this fact by linear arithmetic reasoning only, and—upon failure—it asks
back the prover for facts involving certain user-defined functions occurring in
the context. This results in a particularly complex form of interaction whereby
the prover and the linear arithmetic specialist can engage in an arbitrarily long
sequence of requests and replies.

5 Conclusions

The OMRS Project provides a specification framework for the construction of
reasoning systems which are open in the sense that they can be easily (or per-
haps just more easily than current technology allows) integrated together. The
application of the framework to the case studies described in this paper give
evidence of the viability of the approach.

References

[1] A. Armando and S. Ranise. From Integrated Reasoning Specialists to “Plug-
and-Play” Reasoning Components. In Fourth International Conference on Arti-
ficial Intelligence and Symbolic Computation (AISC98). Plattsburgh, NY, USA.
September 16-18, 1998.

[2] C. Ballarin, K. Homann, and J. Calmet. Theorems and Algorithms: An Interface
between Isabelle and Maple. In ISAAC’95, pages 150–157, Canada, 1995.

[3] P.G. Bertoli. Using OMRS in practice: a case study with acl2. PhD thesis,
Computer Science Dept., University Rome 3, Rome, 1997. Forthcoming.

[4] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979. ACM
monograph series.

[5] R.S. Boyer and J.S. Moore. Integrating Decision Procedures into Heuristic Theo-
rem Provers: A Case Study of Linear Arithmetic. Machine Intelligence, 11:83–124,
1988.

[6] William Chan, Richard J. Anderson, Paul Beame, and David Notkin. Combining
constraint solving and symbolic model checking for a class of systems with non-
linear constraints. In Orna Grumberg, editor, Computer Aided Verification, 9th
International Conference, CAV’97 Proceedings, volume 1254 of Lecture Notes in
Computer Science, pages 316–327, Haifa, Israel, June 1997. Springer-Verlag.

[7] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of maude. In Rewriting
Logic Workshop’96, 1996.

[8] M. Clavel and J. Meseguer. Reflection in rewriting logic. In Rewriting Logic
Workshop’96, 1996.



[9] A. Coglio. “Definizione di un formalismo per la specifica delle strategie di inferenza
dei sistemi di ragionamento meccanizzato e sua applicazione ad un sistema allo
stato dell’arte”, 1996. Master thesis, DIST - University of Genoa (Italy).

[10] Alessandro Coglio, Fausto Giunchiglia, José Meseguer, and Carolyn L. Talcott.
Composing and controlling search in reasoning theories using mappings. 1998.
Submitted to the Second International Workshop on ‘Frontiers of Combining Sys-
tems’ (FroCoS’98).

[11] F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning Theories: Towards an Ar-
chitecture for Open Mechanized Reasoning Systems. Technical Report 9409-15,
IRST, Trento, Italy, 1994. Also published as Stanford Computer Science De-
partment Technical note number STAN-CS-TN-94-15, Stanford University. Short
version published in Proc. of the First International Workshop on Frontiers of
Combining Systems (FroCoS’96), Munich, Germany, March 1996.

[12] J. Harrison and L. Théry. A Sceptic’s Approach to Combining HOL and Maple.
To appear in the JAR, 1997.

[13] M. Kaufmann and J. S. Moore. acl2 Version 1.8 User’s Manual. Available on
line at http://www.cs.utexas.edu/users/moore/acl2/index.html.

[14] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic as a logical and seman-
tic framework. In D. Gabbay, editor, Handbook of Philosophical Logic. Kluwer
Academic Publishers, 1997.

[15] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96(1):73–155, 1992.

[16] J. Meseguer and C. Talcott. Reasoning theories and rewriting logic. (in prepara-
tion).

[17] C. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
TOPLAS, 1(2):245–257, 1979.

[18] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1–12, January 1984.

[19] The OMRS Taskforce. The Open Mechanized Reasoning Systems Project WWW
Page. http://www.mrg.dist.unige.it/omrs/.


