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ABSTRACT

Extended Simple Colored Petri Nets (ESCP-nets) are a

new class of High-level Petri Nets conceived as a good

trade-off between Petri Nets (P-nets) and Colored Petri

Nets (CP-nets), to be used in plant simulation.

ESCP-nets, while being much more convenient and

compact than P-nets, are fairly simpler than CP-nets,

thus being more easily implemented and more amenable

to formal analysis. Furthermore, they possess some

features particularly well-suited to plant simulation. The

successful employment of ESCP-nets in an industrial

application has confirmed their validity.

1. INTRODUCTION

Petri Nets (P-nets) [7, 6] are very well-suited to

applications involving plants, in particular plant

simulation. The reason is that P-nets can explicitly and

conveniently model flows, resource sharing,

concurrency, synchronization, and so on, which are

important aspects of the workings of plants and hence of

their simulation. By adding some explicit time concept

to P-nets (this has been done in many ways in the

literature), P-net executors can be implemented to

simulate plants in order to experimentally obtain

performance measures (e.g. throughput, utilization

percentages, etc.) which otherwise would be hardly

computed by analytical methods. In addition, there is a

host of well-established methods to perform various

kinds of formal analysis about properties of P-nets ([6]

surveys them).

However, as it is well-known, P-nets tend to rapidly

increase their size as the complexity of the systems they

model increases. Too large P-nets are inconvenient to

create and use, because most of their advantages (such

as the visual information they convey) are lost.

Furthermore, most methods of formal analysis cannot be

applied to large P-nets owing to computational

complexity. So, it is impractical to use P-nets to model

complex, real-world plants.

To overcome this problem (which not only arises in

plant simulations, but also in most other application

fields of P-nets as well), Colored Petri Nets (CP-nets)

[5] have been introduced. Tokens of CP-nets are data

items of arbitrary user-defined data types, which are

elaborated through arbitrary user-defined functions.

This allows complex systems to be conveniently

modeled by relatively compact CP-nets. The price to be

paid is that most methods of formal analysis do not

generalize to CP-nets, and, even more important from

certain points of view, implementing CP-nets requires

much greater efforts than implementing P-nets.

For these reasons, we have devised a new class of High-

level Petri Nets, called Simple Colored Petri Nets

(SCP-nets) [4]. SCP-nets are similar, in spirit, to

CP-nets, but they pose some restrictions upon the types

which can be defined by the user. Roughly speaking,

they only allow enumerative data types (i.e. types whose

items must be explicitly enumerated one by one).

Despite this restriction, SCP-nets are extremely useful in

many fields, including (but not limited to) plant

simulation. An SCP-net can in fact be “exponentially”

smaller than a corresponding P-net. The advantage over

CP-nets, is their much greater simplicity, which results

in highly reduced implementation efforts. Furthermore,

SCP-nets seem to be more amenable to formal analysis,

and we are doing some research in this direction.

To better employ SCP-nets in plant simulation, we have

found it useful to enhance them by three features. First,

we have introduced a “built-in” data type consisting of

floating point numbers, very useful to model continuous

quantities (e.g. tons of pooled materials, sizes of objects,

and so on). Second, we have added a simple but

powerful explicit time concept, in order to model

durations of processes (e.g. the duration of a machine

operation). Third, we have provided an “interface”

through which an external supervisor can model high-

level scheduling strategies (e.g. aimed at optimizing

performance and/or avoiding deadlocks) which depend

on the overall state of the simulated plant. We have

called these enhanced SCP-nets Extended Simple

Colored Petri Nets (ESCP-nets).



In Sec. 2 we describe ESCP-nets. In Sec. 3 we briefly

present an industrial application of ESCP-nets. Finally,

in Sec. 4 we draw some conclusions and outline future

work.

2. DESCRIPTION

We now give an informal description of ESCP-nets;

formal definitions can be found in [3]. To ease

understanding, as we present concepts we instantiate

them to the simple ESCP-net depicted in Fig. 1. Such an

ESCP-net models an artificial abstract process where

unpainted cubes and spheres (of various sizes) get

painted with red, green, or blue paint, by means of

suitable subtractive color syntheses of magenta, yellow,

and cyan paint. Despite its simplicity, this example

exhibits all the key features of ESCP-nets.

Topology

The topology of an ESCP-net is defined in the

“standard” way: places, transitions, and arcs connecting

them. A place and a transition can be connected by more

than one arc in the same direction. In Fig. 1, places,

transitions, and arcs, are respectively represented as

circle, rectangles, and arrows, according to the usual

graphical convention (for now, ignore the shading of the

transition START).

Tokens

The tokens of an ESCP-net are defined by means of a

token taxonomy, i.e. a finite directed acyclic graph

(DAG) of identifiers, like that in Fig. 1. The terminal

nodes of the DAG (e.g. cyan, none, cube) are called

base tokens, while the non-terminal nodes (e.g. Color,

Secondary, Shape) are called base types. Given a base

token k and a base type y, we say that k has type y iff

there exists a path in the DAG from y to k (e.g. yellow

has both type Color and Primary, but not Shape or

Secondary; sphere has type Shape but not Color). Given

two base types y and y′, we say that y is a super-type of

y′ and that y′ is a sub-type of y iff there exists a non-

empty path in the DAG from y to y′ (e.g. Primary is a

sub-type of Color and Color is a super-type of Primary;

Shape has no sub-types or super-types; Color has two

sub-types but no super-types).

In addition, for any ESCP-net all the real numbers are

also called base tokens, the distinguished identifier R is

also called base type, and we say that each real number

has type R. In other words, R is a sort of implicit and

predefined base type for any ESCP-net, whose base

tokens are the real numbers. However, R has no sub-

types or super-types.

A token is a finite concatenation k1;…;kn of n ≥ 1 base

tokens (e.g. magenta;80, cube;2.5;green). A type is a

finite concatenation y1;…;ym of m ≥ 1 base types (e.g.

Color;R, Shape;R;Color). (So, as expected, each base

token is also a token, and each base type is also a type.)

We say that k1;…;kn has type y1;…;ym iff n = m and each

ki has type yi (e.g. magenta;80 has both type Color;R

and Primary;R, but not Secondary;R or R;Color;

cube;2.5;green has type Shape;R;Color). Given two

types y = y1;…;ym and y′ = y1′;…;ym′′, we say that y is a

super-type of y′ and that y′ is a sub-type of y iff y ≠ y′,
m = m′, and each yi is either equal to yi′ or is a super-

type of yi′ (e.g. Color;R is a super-type of Primary;R).

Each place of an ESCP-net is labeled by a type, and the

place can only be marked by (i.e. “contain” occurrences

of) tokens of that type. Each place can be marked by

multiple occurrences of a same token, in fact the

marking of a place is a multiset of tokens. For instance,

UNPAINTED is labeled by Shape;R;Color, and is in fact

marked by cube;2;none and sphere;3;none, which

respectively represent an unpainted cube of edge 2 (in

some unspecified units), and an unpainted sphere of

radius 3. As another example, TANKS1 is labeled by

Primary;R, and is in fact marked by magenta;80,

yellow;76, and cyan;41, which represent three tanks of

paint in the indicated quantities (in some unspecified

units). (Note that in Fig. 1 we use abbreviations for the

base token identifiers inside places.)

Expressions

The arcs of an ESCP-net are labeled by expressions,

which are built out of tokens, variables, and functions.

Each variable has an associated type, and only tokens of

that type can be assigned to the variable. For instance,

in Fig. 1 the variable pc1 has Primary as associated type.

While yellow can be assigned to pc1, red or cube;4.55

cannot.

Each function has two associated types (respectively

domain and range), and maps tokens of its domain to

tokens of its range. For instance, in Fig. 1 the function

subsyn maps tokens of type Primary;Primary to tokens

of type Color, as follows:

subsyn (magenta;yellow) = red ,

subsyn (yellow;magenta) = red ,

subsyn (yellow;cyan) = green ,

subsyn (cyan;yellow) = green ,

subsyn (cyan;magenta) = blue ,

subsyn (magenta;cyan) = blue ,

subsyn (magenta;magenta) = magenta ,

subsyn (yellow;yellow) = yellow ,

subsyn (cyan;cyan) = cyan .

In other words, subsyn returns the color obtained by

subtractive synthesis of the two (primary) colors given

as arguments. The function area is instead defined as



follows:

∀ x real number :  area(cube;x) = 6 ⋅ x2 ,

∀ x real number :  area(sphere;x) = 4 ⋅ pi ⋅ x2 .

In other words, area returns the surface area of a cube or

sphere whose edge or radius (respectively) measures x

(pi denotes the ratio of a circumference measure to its
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Fig. 1: A simple ESCP-net.



diameter). Finally, the functions − and ∗ have the

obvious semantics of subtraction and multiplication of

real numbers.

In Fig. 1 the arc from UNPAINTED to START is labeled

by the expression shp;dim;none (for now, ignore the

underlining of shp and dim), while the arc from START

to TANKS1 is labeled by the expression

pc1;q1−0.3∗area(shp;dim) (note that we use an infix

notation for − and ∗). Similarly to a token, each

expression has one or more types (e.g. shp;dim;green

has type Shape;R;Color and also Shape;R;Secondary).

It is required that the expression labeling an arc has the

type labeling the place which the arc is attached to.

A binding is an assignment of tokens to some variables,

where of course each token must have the type

associated to the variable to which it is assigned. Given

a binding for all the variables present in an expression,

the expression evaluates to a token. For instance, if we

assign cube to shp, 2 to dim, magenta to pc1, and 80 to

q1, the expression pc1;q1−0.3∗area(shp;dim) evaluates

to the token magenta;72.8.

Guards

The transitions of an ESCP-net are optionally labeled by

guards, which are built out of expressions, predicates,

and logical connectives.

Each predicate has an associated type, and maps each

token of that type to T (true) or F (false). For instance,

in Fig. 1 ≠ maps, as expected, tokens of type

Primary;Primary to T if the two components base tokens

are different, to F otherwise. The predicate ≥ has the

obvious semantics of the greater-than-or-equal-to

relation over real numbers.

In Fig. 1 START is labeled by the guard ( pc1 ≠ pc2 &

q1 ≥ 0.3∗area(shp;dim) & q2 ≥ 0.3∗area(shp;dim) ),

where of course & is the logical connective for

conjunction (note that we use an infix notation for both

≠ and ≥).

Given a binding for all the variables present in a guard,

the guard evaluates to T or F. For instance, if we assign

cube to shp, 2 to dim, magenta to pc1, cyan to pc2, 80

to q1, and 50 to q1, the guard labeling START evaluates

to T.

Firings

Given a transition and a binding for all the variables

present in the expressions labeling all the arcs

surrounding the transition, the firing of the transition

with such a binding amounts to first removing tokens

from the input places of the transition, then adding

tokens to the output places, as indicated by the tokens

which the corresponding arc expressions evaluate to.

However, in order for a transition to be enabled with

such a binding, all the tokens to be removed must be

present in the input places, and furthermore, if a guard

labels the transition, it must evaluate to T.

For instance, consider START in Fig. 1, and a binding

assigning cube to shp, 2 to dim, magenta to pc1, 80 to

q1, cyan to pc2, and 50 to q2. It is easily seen that

START is enabled with this binding. Its firing has the

following effects: first cube;2;none is removed from

UNPAINTED, magenta;80 from TANKS1, and cyan;50

from TANKS2; then, cube;2;blue is added to PAINTING,

magenta;72.8 to TANKS1, and cyan;42.8 to TANKS2.

This firing represent the fact that an unpainted cube of

edge 2 starts to be painted with blue paint, obtained by

mixing together magenta and cyan paint in equal

proportions, consuming quantities of these paints

proportional (according to a factor 0.3 in some

unspecified units) to the surface area of the cube.

Times

In ESCP-nets, each token is required to stay in a place a

certain amount of time before being allowed to leave the

place. This is achieved by attaching a natural number,

called waiting time, to each (occurrence of) token

marking each place. The waiting time indicates the

residual time (in some discrete units) to wait, and is

meant to be decremented as time passes. A token may

leave a place only if its waiting time is 0. (Note that in

Fig. 1 we have omitted waiting times.) The waiting time

of a token entering a place is initialized according to a

time probability distribution, i.e. an infinite sequence

(π0, π1, …) of real numbers between 0 and 1 (inclusive),

such that π0 + π1 + … = 1. Each πi represents the

probability that the initial waiting time of the token is i.

Instead of simply labeling each place by a time

probability distribution (according to which the waiting

time of each token entering the place would be

initialized), we adopt a more flexible approach. Each

ESCP-net contains, besides variables, functions, and

predicates, also distribution families, each of which has

an associated type. Each distribution family maps tokens

of the associated type to time probability distributions.

For instance, in Fig. 1 the distribution family const

maps each real number (which is a token of type R) x to

the time probability distribution such that πi = 0 for all i

except the result j of rounding x, for which we have

πj = 1 (in case x is negative, we can totalize const by just

taking j = 0, however this should never happen unless

the ESCP-net is ill-designed). Each place is labeled by a

stochastic time, which is a syntactical entity (like

expressions and guards) of the form df(e), where df is a

distribution family and e is an expression having the



type associated to df. For instance, in Fig. 1 PAINTING is

labeled by the stochastic time const(8∗area(shp;dim)).

So, when a transition fires with a binding, the stochastic

times labeling the output places of the transition are

evaluated, according to the binding, to time probability

distributions, and the waiting times of the tokens

entering the places are initialized according to such time

probability distributions. For instance, the waiting time

of each token entering PAINTING is initialized to a value

proportional, according to a factor 8 (in some

unspecified units), to the surface area of the cube or

sphere to be painted. Only after such number of time

units has elapsed, the token is allowed to leave a place

and “move” to PAINTED, through the firing of END.

This models the fact that the actual painting process

takes a time proportional to the surface area of the object

being painted.

The advantage of the above approach is that for each

place we just specify the family df of possible time

probability distributions, and the expression e according

to which one distribution of the family is chosen. In this

way, different tokens can have different waiting time

statistics. Note that if places were just labeled by fixed

time probability distributions, there would be no way to

have tokens wait in PAINTING amounts of time

proportional to the surface areas. Of course, fixed time

probability distributions can be obtained just by means

of stochastic times containing constant expression (e.g.

all the places in Fig. 1 other than PAINTING are labeled

by const(0)).

In the ESCP-net in Fig. 1, if we wanted tokens to wait

in PAINTING amounts of time with gaussian

distributions, with mean values and standard deviations

proportional (according to factors 8 and 2, respectively)

to the surface areas, it would be sufficient to do the

following. First, we would replace const with a

distribution family gauss, with associated type R;R,

mapping each token x1;x2 of type R;R to a gaussian-

shaped time probability distribution with mean and

standard deviation x1 and x2 respectively. Then, we

would re-label PAINTING with the stochastic time

gauss(8∗area(shp;dim);2∗area(shp;dim)).

Control Interface

An ESCP-net has a control interface through which it

can be externally supervised. A control interface

consists of a distinguished set of transitions, called

controlled transitions, and, for each of them, a

distinguished subset of the variables surrounding it,

called controlled variables. The “semantics” of a

control interface is that an external supervisor can

explicitly enable or disable controlled transitions, and,

for each controlled transition it enables, it can specify

the tokens to be assigned to the controlled variables.

For instance, in Fig. 1 START is a controlled transition,

as indicated by the shading, and shp, dim, pc1, and pc2

are its controlled variables, as indicated by the

underlining. This means that an external supervisor can

decide when to enable START (i.e. when the painting of

a new cube or sphere starts), and, by assigning tokens to

the four controlled variables, can decide which

unpainted object (among those represented by the tokens

which mark UNPAINTED) is painted and by mixing

which primary colors.

3. AN INDUSTRIAL APPLICATION

We have successfully employed ESCP-nets in an

industrial application for Demag Italiampianti (the

largest Italian industry producing plants), consisting in

implementing an architecture for plant simulation that

we have designed [2]. The core of the architecture is an

executor of ESCP-nets. An expert system externally

supervises the executor, through the ESCP-net control

interface, by means of rules about the marking of the

ESCP-net. Details of the architecture and of its

implementation, can be found in [2].

As part of this industrial application, we have also

realized a visual editor to create and edit ESCP-nets,

through an intuitive graphical interface. ESCP-nets can

be saved as ASCII files (in a special-purpose format that

we have defined), and thus used in possibly many

different applications. Our visual editor offers a lot of

facilities to the user, such as recursively hiding

ESCP-net fragments, called ESCP-subnets, inside so-

called macro places, so that a same ESCP-subnet can be

used inside larger ESCP-(sub)nets for modular

development.

The success of this industrial application provides

evidence of the validity of ESCP-nets as a tool for plant

simulation. In fact, the use of our architecture to realize

plant simulators results in dramatic reductions of

development times and errors, with respect to the use of

general-purpose programming languages like C or C++.

For instance, through our implementation of the

architecture we have realized a simulator of a real-world

plant (namely, the raw material handling area of the

steel-plant at Servola-Trieste, in Italy) in a few days,

while another simulator of the same plant and at the

same level of detail had been developed in Fortran by

Demag Italiampianti in several weeks. Furthermore,

simulators realized through our architecture are much

more readable than source code listings, and hence

easier to understand and to maintain.

4. CONCLUSIONS AND FUTURE WORK

ESCP-nets constitute an extremely valuable tool for



plant simulation. Even if the features added to SCP-nets

also add some complexity, ESCP-nets are still, like

SCP-nets, a good trade-off between the simplicity of

P-nets and the convenience of CP-nets. Their

implementation in fact requires much less effort than

CP-nets. Furthermore, there are formal results which

relate the behavior of ESCP-nets to that of SCP-nets (see

[3]), thus easing formal analysis.

Although ESCP-nets have been designed for plant

simulation, we have planned to investigate other

applications as well. In particular, we are working about

multimedia systems for novel interactive applications in

music, art, entertainment, and museums [1]. ESCP-nets

are a promising conceptual tool to support the design of

agents capable of establishing creative, multimodal user

interaction, by exhibiting real-time adaptive behavior.

We have also planned to enhance our ESCP-net visual

editor by allowing the development of parameterized

ESCP-subnets, which can be instantiated with actual

parameters and used inside larger ESCP-(sub)nets. For

instance, a “buffer” ESCP-subnet might be defined,

parameterized on the dimension, type of tokens to be

stored, and buffering policy (e.g. FIFO, LIFO). Such a

feature would greatly increase modularity of

development.
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