
Technical Report

6SHFLILFDWLRQ�RI
DQ�([HFXWRU�RI�([WHQGHG
6LPSOH�&RORUHG�3HWUL�1HWV

Antonio Camurri and Alessandro Coglio

Dept. of Informatics, Systems, and Telecommunications (DIST)

Faculty of Engineering – University of Genoa

Viale Causa 13
16145 Genova, Italy

E-mail: {music, tokamak}@dist.unige.it

December 1997

1

Specification of an Executor of

Extended Simple Colored Petri Nets

Antonio Camurri and Alessandro Coglio

Abstract

We present a formal specification of an executor of Extended Simple Colored Petri Nets

(ESCP-nets), meant to be externally supervised. The execution of an ESCP-net proceeds

through discrete steps, each performed in response to a call from an external supervisor, in

charge of indicating which controlled transitions are allowed to fire and which tokens can

be assigned to their controlled variables. We have realized an object-oriented C++
implementation of the executor, as part of an industrial project for Demag-Italimpianti (the

largest Italian industry producing plants). After giving the specification of the executor, we

also discuss some implementation issues.

1. Introduction

In this report we present a formal specification of an executor of Extended Simple

Colored Petri Nets (ESCP-nets) [3, 2, 1]. We have developed an object-oriented C++
implementation of this executor, as part of an industrial project for Demag-Italimpianti

(the largest Italian industry producing plants). The project consisted in the realization

of software tools for the development and execution of plant simulators built according

to an architecture [1] where the executor is supervised by means of declarative rules

about the marking of the ESCP-net. In fact, the executor we specify here is meant to

receive information (from an external supervisor) about which controlled transitions

are allowed to fire and which tokens can be assigned to their controlled variables.

In Section 2 we present our specification of the executor, and in Section 3 we

discuss some implementation issues. The formal definitions we give in Section 2 are

based upon those in Section 2 of [3]. The mathematical concepts and notations we use

are explained in the Appendix of this report, as well as in the Appendix of [3].

2. Specification

The execution of an ESCP-net by our executor proceeds through discrete steps at

evenly spaced time instants of the simulated time axis (which does not necessarily

coincide with the real time axis). The distance between two successive such time

instants equals the unit of waiting times of tokens. The executor performs each

execution step in response to an external call, graphically depicted in Figure 1. The call

comes with an object CEnab containing some controlled transitions accompanied by

bindings for their controlled variables, specifying which controlled transitions are

allowed to fire and which tokens can be assigned to their controlled variables. The

execution step consists of two phases: first, all the waiting times of tokens are

decremented by one (modeling that a simulated time unit has elapsed); second,

transitions fire exhaustively and non-deterministically, in compliance with CEnab, thus

modifying the marking (which constitutes the internal state of the executor). An object

Fseq containing the transition firings which have taken place, is returned by the

executor as a result of the call.

In addition to the calls to perform execution steps, the executor also accepts and

processes external calls requesting information about the current marking (e.g. how

2

many occurrences of a certain token mark a certain place). Of course these other calls

do not modify the marking, and many of them may take place between two successive

calls to perform execution steps.

In the following subsections, we formalize execution steps by means of suitable

mathematical functions.

2.1 Random Stream

Since certain aspects of the working of the executor are non-deterministic, we

preliminarily introduce the concept of random stream, which is substantially an infinite

sequence of uniformly random values
1
. In following subsections we use random

streams as additional arguments to functions, in order to formalize non-deterministic

behaviors by means of (deterministic) mathematical functions.

Definition 1. A random stream is a family

{zi} i∈N

of real numbers such that

∀ i ∈ N : 0 ≤ zi < 1.

Z is the set of all random streams.

2.2 Decrementing Waiting Times

As mentioned above, the first phase of an execution step consists in decrementing all

the waiting times by one (except for null waiting times, which retain their value). This

is formalized by the following function.

Definition 2. Given an ESCP-net ESCPN, the function

tick ∈ [M → M]

is defined as follows.

Let µ ∈ M. For all p ∈ P, we define:

(1) ∀ k:0 ∈ TKψ(p) : tick(µ)(p)(k:0) = µ(p)(k:0) + µ(p)(k:1);

(2) ∀ k:θ ∈ TKψ(p), θ ≥ 1 : tick(µ)(p)(k:θ) = µ(p)(k:θ+1).

1 More precisely, a random stream is just an infinite sequence of values, which we assume randomly

generated with uniform probability density.

(;(&8725

0$5.,1*

FseqCEnab

Figure 1: A call to perform an execution step.

3

2.3 Firing a Transition

The firing of a transition with a binding is formalized by the following function.

Definition 3. Given an ESCP-net ESCPN, the function

fire ∈ [D → M],

where

D = { 〈µ, t, β, {zi} i∈N〉 | µ ∈ M ∧
t ∈ T ∧
β binding for Var(t) ∧
t enabled with β in µ ∧
{zi} i∈N ∈ Z },

is defined as follows.

Let 〈µ, t, β, {zi} i∈N〉 ∈ D. Let a1, …, an ∈ A (n ≥ 0) be such that:

(1) Out(t) = {a1, …, an};

(2) a1 << … << an, where << is an arbitrary but fixed total order relation over A.

Let

∀ j ∈ {1,…,n} : ζ(aj) = zj−1.

Let µ′ be the marking produced by t firing with β and ζ in µ. We define

fire(µ, t, β, {zi} i∈N) = µ′.

The function fire returns the marking produced by the firing of t with β in µ, as

defined in Definition 16 of [3]. The random generation of the waiting times is obtained

from the first n elements z0, …, zn−1 of the random stream {zi} i∈N, which are orderly

associated to the outgoing arcs of t according to a total order over the arcs of the

ESCP-net.

2.4 Firing a Randomly Chosen Transition

The random choosing of an enabled transition (if any) and its firing, are formalized by

the following function.

Definition 4. Given an ESCP-net ESCPN, the function

choose&fire ∈ [D → D ∪ {exhausted}],

where

D = {〈µ, CEnab, {zi} i∈N, Fseq〉 |
µ ∈ M ∧
CEnab ∈ MMω({ 〈t, βC〉 | t ∈ CT ∧ βC binding for ξ(t) }) ∧
{zi} i∈N ∈ Z ∧
Fseq ∈ { 〈t, β〉 | t ∈ T ∧ β binding for Var(t) }∗

 },

is defined as follows.

Let 〈µ, CEnab, {zi} i∈N, Fseq〉 ∈ D. Let

Enab = { 〈t, β〉 | t ∈ T ∧
β binding for Var(t) ∧
t enabled with β in µ ∧
(t ∉ CT ∨ ∃ βC ⊆ β : 〈t, βC〉 ∈ CEnab) }.

Since CEnab is finite and each place is marked by a finite number of T-tokens, it is

easy to see that Enab is finite. We define

Enab = ∅ ⇒ choose&fire(µ, CEnab, {zi} i∈N, Fseq) = exhausted.

4

Otherwise, let 〈t1, β1〉, …, 〈tn, βn〉 ∈ { 〈t, β〉 | t ∈ T ∧ β binding for Var(t) } (n ≥ 1) be

such that:

(1) Enab = { 〈t1, β1〉, …, 〈tn, βn〉 };

(2) 〈t1, β1〉 << … << 〈tn, βn〉, where << is an arbitrary but fixed total order relation over

{ 〈t, β〉 | t ∈ T ∧ β binding for Var(t) }.

Let j ∈ {1,…,n} be such that

j

n
z

j

n

−
≤ <

1
0 .

Let

µ′ = fire(µ, tj, βj, {zi+1} i∈N).

Let

CEnab′ = if (∃ βC ⊆ βj : 〈tj, βC〉 ∈ CEnab) then CEnab − { 〈tj, βC〉 }m

else CEnab.

Let

{zi′}i∈N = {zi+1+|Out(tj)|} i∈N.

Let

Fseq′ = Fseq ⁄⁄ [〈tj, βj〉].
We define

choose&fire(µ, CEnab, {zi} i∈N, Fseq) = 〈µ′, CEnab′, {zi′}i∈N, Fseq′〉.

First, the (finite) set Enab of enabled transitions (with relative bindings) in µ is

computed, in compliance with CEnab. “Compliance” means that only controlled

transitions present in CEnab may be present in Enab, and their bindings in Enab must

extend (without overwriting) the corresponding bindings in CEnab. In case Enab is

empty, choose&fire returns exhausted, indicating that no transition can fire. If,

otherwise, Enab is non-empty, a pair 〈t, β〉 is randomly chosen from Enab, according

to the first element z0 of the random stream. This is achieved by orderly associating the

elements of Enab to equal-length intervals partitioning the interval between 0

(inclusive) and 1 (exclusive), and then choosing the element of Enab associated to the

interval where z0 falls. The function fire is then invoked, obtaining a new marking µ′
produced by t firing with β in µ (the waiting times for the tokens are generated

according to the elements z1, …, z|Out(tj)| of the random stream). At this point, if t is

controlled, an occurrence of the pair 〈t, βC〉, where βC is the restriction of β to the

controlled variables of t, is removed from CEnab (which must contain such pair

because of the way Enab is computed), obtaining CEnab′. If t is not controlled,

CEnab′ coincides with CEnab. Finally, the pair 〈t, β〉 is appended to Fseq, obtaining

Fseq′, and the first |Out(t)| + 1 elements of the random stream are eliminated, obtaining

{zi′} i∈N. The function choose&fire thus returns µ′, CEnab′, Fseq′ and {zi′} i∈N as

results.

The reason why not only µ′, but also CEnab′, Fseq′, and {zi′} i∈N are returned by

choose&fire, is that, as we will see in the next subsection, choose&fire is repeatedly

invoked upon the results returned by each previous invocation.

2.5 Exhaustively Firing Randomly Chosen Transitions

As mentioned above, the second phase of an execution step consists in exhaustively

and non-deterministically firing transitions, in compliance with CEnab. This is

formalized by the following function.

5

Definition 5. Given an ESCP-net ESCPN, the function

choose&fire
∗
 ∈ [D →p D′],

where

D = {〈µ, CEnab, {zi} i∈N, Fseq〉 |
µ ∈ M ∧
CEnab ∈ MMω({ 〈t, βC〉 | t ∈ CT ∧ βC binding for ξ(t) }) ∧
{zi} i∈N ∈ Z ∧
Fseq ∈ { 〈t, β〉 | t ∈ T ∧ β binding for Var(t) }∗

 }
and

D′ = { 〈µ, Fseq〉 | µ ∈ M ∧
Fseq ∈ { 〈t, β〉 | t ∈ T ∧ β binding for Var(t) }∗

 },

is defined as follows.

Let 〈µ, CEnab, {zi} i∈N, Fseq〉 ∈ D. We define

choose&fire
∗
(µ, CEnab, {zi} i∈N, Fseq) =

if choose&fire(µ, CEnab, {zi} i∈N, Fseq) = exhausted

then 〈µ, Fseq〉
else choose&fire

∗
(choose&fire(µ, CEnab, {zi} i∈N, Fseq)).

The application of choose&fire
∗
 amounts to the repeated application of

choose&fire, until it returns exhausted (which indicates that no more transitions are

enabled). Through these repeated applications, pair occurrences are removed from

CEnab as controlled transitions fire, and pairs are appended to Fseq as transitions

(controlled or not) fire.

Note that the recursive definition of choose&fire
∗
 implies that it is a partial

function. The values outside the domain are those for which the iterated application of

choose&fire does not terminate and goes on forever.

2.6 Performing an Execution Step

An execution step consists in first decrementing waiting times, then exhaustively firing

randomly chosen transitions, as formalized by the following function.

Definition 6. Given an ESCP-net ESCPN, the function

step ∈ [D →p D′],
where

D = { 〈µ, CEnab, {zi} i∈N〉 | µ ∈ M ∧
CEnab ∈ MMω({ 〈t, βC〉 | t ∈ CT ∧ βC binding for ξ(t) } ∧
{zi} i∈N ∈ Z }

and

D′ = { 〈µ, Fseq〉 | µ ∈ M ∧
Fseq ∈ { 〈t, β〉 | t ∈ T ∧ β binding for Var(t) }∗

 },

is defined as follows.

Let 〈µ, CEnab, {zi} i∈N〉 ∈ D. We define

step(µ, CEnab, {zi} i∈N) = choose&fire
∗
(tick(µ), CEnab, {zi} i∈N, []).

The arguments of step are the current marking µ, a multiset CEnab (from an

external supervisor), and a random stream {zi} i∈N. First, waiting times are decremented

by invoking tick, obtaining a marking µ′. Then, choose&fire
∗
 is invoked upon µ′,

CEnab, the random stream, and the empty sequence, obtaining another marking µ″ and

a firing sequence Fseq, which are returned by step as results. µ″ is produced by

6

exhaustively firing transitions in compliance with CEnab. CEnab is a multiset, instead

of simply a set, to allow a same transition to fire more than once with a same binding

for its controlled variables. Note that some controlled transitions in CEnab may fire

less times (possibly none) than their occurrences in CEnab. Fseq collects all the

transitions (and relative bindings) which fire during the execution step, in the order

they fire.

Note that, by virtue of the definition above, step is partial because choose&fire
∗

is partial. µ, CEnab and {zi} i∈N are outside the domain of step iff they cause non-

termination of choose&fire
∗
. In fact the executor may not terminate an execution step,

but this means that the ESCP-net is ill-designed.

3. Implementation Issues

Of course, the specification in the previous section just states what the executor does,

not how it should work. In fact, an actual implementation should use more efficient

algorithms than those of the mathematical functions we have defined above. For

instance, instead of re-computing the set Enab from scratch each time a transition fires,

Enab should be encoded by means of incrementally modified data structures.

Concerning Enab, efficiency dictates the following slight discrepancy between

our specification and an actual executor. Conceptually, computing Enab requires

iterating through all transitions, and for each of them, computing the bindings with

which it is enabled (the bindings are computed from scratch if the transition is not

controlled, otherwise they are computed starting from those in CEnab). Such bindings

are found by matching incoming arc expressions with tokens marking input places, and

checking guard satisfaction. In addition, it would be necessary to check that no

outgoing arc expression or output place stochastic time evaluates to E (otherwise the

transition is not enabled with the binding, according to Definition 16 of [3]). However,

this further check is not done in an actual executor for efficiency reasons, so that some

transitions in Enab might really be not enabled. In case one of these transitions is

chosen and tentatively fired, the executor should stop with an error. Nevertheless, the

occurrence of such a case means that the ESCP-net is ill-designed. In fact, in well-

designed ESCP-nets the set Enab as computed by an actual executor always contains

transitions which are really enabled.

We conclude with a remark about the total order relations among the arcs of an

ESCP-nets, and among the pairs 〈t, β〉 of transitions and relative bindings, respectively

required by Definition 3 and Definition 4. In an actual executor, there is usually no

need of explicitly implementing order relations, as they can be implicitly determined by

the inherent order of data structures such as arrays and lists, by which both the set of

surrounding arcs of a transition and the set Enab are likely to be encoded.

Appendix

In Section 2 we use the mathematical concepts and notations explained below, besides

those explained in the Appendix of [3].

If A is a finite set, |A| is its cardinality, i.e. the number of its elements.

If A is a set, ms ∈ MMω(A), and a ∈ A, we write a ∈ ms to express that ms(a) ≥ 1.

If A and B are sets, [A →p B] is the set of all partial functions with domain A and

codomain B.

7

If f ∈ [A → B] and f′ ∈ [A′ → B′], we write f ⊆ f′ to express that A ⊆ A′ and

f(a) = f′(a) for each a ∈ A.

If A is a set, A
∗
 is the set of all finite sequences [a1, …, an] with n ≥ 0 and

a1, …,an ∈ A. [] is the empty sequence. The concatenation [a1′, …, an′, a1″, …, am″] of

two sequences [a1′, …, an′] and [a1″, …, am″] is denoted by

[a1′, …, an′] ⁄⁄ [a1″, …, am″].

References

[1] A. Camurri, A. Coglio, “A Petri Net-based Architecture for Plant Simulation”, in

Proceedings of the 6
th
 IEEE Conference on Emerging Technologies and

Factory Automation, UCLA, Los Angeles, California (USA), September 1997.

[2] A. Camurri, A. Coglio, “Extended Simple Colored Petri Nets: A Tool for Plant

Simulation”, in Proceedings of the 1997 IEEE International Conference on

Systems, Man, and Cybernetics, Hyatt Orlando, Orlando, Florida (USA),

October 1997.

[3] A. Camurri, A. Coglio, Extended Simple Colored Petri Nets, Technical Report,

DIST, University of Genoa, Italy, December 1997, available at

ftp://ftp.dist.unige.it/pub/infomus/Publications/escpnets.ps.zip.

