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Abstract: Our ultimate goal is to provide a framework and a methodology which

will allow users to construct and extend complex reasoning systems by composing ex-

isting modules in a \plug and play" manner. To this end in a previous paper we have

de�ned a general architecture for a class of reasoning modules and systems called Open

Mechanized Reasoning Systems (OMRSs). An OMRS has three components: a logic

component which consists of the assertions manipulated by the OMRS and the elemen-

tary deductions upon them; a control component which consists of the inference strategies

of the OMRS; an interaction component which provides the OMRS with the capability

of interacting with other systems, including OMRSs and human users. We have already

developed a theoretical framework underlying the logic component of this architecture.

In this paper we show how this formalism can be used in practice to specify the logic

component of the simpli�cation process of NQTHM, the Boyer-Moore theorem prover.
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1. Introduction

Our ultimate goal is to provide a framework and a methodology which will allow

users to construct and extend complex reasoning systems by composing existing

modules in a \plug and play" manner. In [7] a general architecture is proposed

for a class of reasoning modules and systems called Open Mechanized Reasoning

Systems (OMRSs). An OMRS has three components: a logic component which

consists of the assertions manipulated by the OMRS and the elementary deductions

upon them; a control component which consists of the inference strategies of the

OMRS; an interaction component which provides the OMRS with the capability of

interacting with other systems, including OMRSs and human users. That work is

focused on the development of the theory underlying the logic component.

This paper follows on the work described in [7]. Here we show how the theory

and methodology introduced in [7] can be used in practice to specify the logic com-

ponent of the simpli�cation process of the Boyer-Moore theorem prover, NQTHM

[5, 4]. We stress that the choice of NQTHM is not by chance. First of all a better un-

derstanding of the internal workings of this system is an interesting exercise per se.

NQTHM is a sophisticated prover with complex reasoning heuristics, data structures

and algorithms designed for e�cient representation and processing of various sorts

of information, and coded for optimal performance. This system has been used to

mechanically prove some quite deep theorems from traditional mathematics, e.g. the

Church-Rosser theorem for lambda calculus and Goedel's incompleteness theorem,

and more \mundane" theorems, e.g. the correctness of a simple real-time control al-

gorithm and the correctness properties of a microprocessor that has been fabricated

(cf. [2, 8] for a rather lengthy list of applications of the system with references). Sec-

ond it is important to remark that, as described in [3], the interoperation among the

modules inside NQTHM is very complex and cannot be described as a combination

of black boxes. The formalization of the simpli�cation process described in this

paper is one of the most challenging tasks we could think of.

Plan: x2 and x3 contain background material. The NQTHM theorem prover and

its simpli�cation process are briey described in x2. This description makes this

work more self-contained, but it is in no way complete. For further details the reader

is urged to consult [4], [5] and [3]. x3 is a brief summary of the main theoretical

concepts described in much more detail in [7]. In x4 we present the formalization

in our framework of NQTHM as an OMRS. Finally x5 contains some concluding

remarks and describes future work.

2. The NQTHM Theorem Prover

The logic of NQTHM is based on a quanti�er-free �rst-order extension of propo-

sitional calculus with equality. A theory in this logic implicitly de�nes a classical

�rst-order theory, i.e. a set of well-formed expressions and a set of axioms. The

expressions of a theory are called terms: a term is either a variable symbol or a

sequence consisting of a function symbol of arity n followed by n terms. Terms are

1



used instead of formulae in the prover

1

: when a term t is used as a formula (for

instance as a conjecture to be proved), it represents the formula t 6= F (where F is a

distinguished term that denotes \falsity"). Axioms can be incrementally added to

the current theory by applying the shell principle (to axiomatize new inductively

de�ned data types such as numbers, graphs, etc.), by applying the de�nition prin-

ciple (to axiomatize new total functions), or by introducing arbitrary formulae as

axioms.

NQTHM interacts with the user by means of high-level events, consisting in

applications of the shell principle, applications of the de�nition principle, introduc-

tions of formulae as arbitrary axioms, or proofs of formulae. At any time the system

keeps track of the sequence of events having taken place so far; such a sequence is

called a history. A history implicitly de�nes a theory in the logic of NQTHM. The

axioms and lemmas (i.e. formulae which have been proved) contained in a history

are tagged by information indicating which inference techniques can use such axioms

and lemmas (e.g. some axioms and lemmas are tagged as rewrite rules, indicating

that they can be used by the rewriting module of the simpli�er).

The search for a proof in NQTHM is driven by heuristics, called inference

processes, that integrate several proof techniques: simpli�cation; elimination of de-

structors; cross-fertilization; generalization; elimination of irrelevance; and induc-

tion. These processes get a formula in clausal form as input and return a set of

clauses (considered conjunctively). A clause in the prover is a list of terms l

1

; : : : ; l

n

(called literals), and represents the formula

l

1

6= F _ � � � _ l

n

6= F:

From a logical point of view all the processes are derived rules of inference that \run

backwards" (cf. [5] p. 129). If a process returns the singleton set containing the input

clause we say that the process fails (because it was not capable of \transforming"

the input clause in any way), otherwise we say that it succeeds.

The top-level control of NQTHM (cf. [4] Chapter V) can be described in analogy

to an (Escher) waterfall (see Figure 1). The user supplies a term which constitutes

the conjecture to be proved. Such a term is �rst preprocessed: some non-recursive

function de�nitions (called abbreviations) are expanded, and the resulting term is

then converted to clausal form. The resulting clauses are put into the top. Repeat-

edly, a clause is removed from the top and poured over the waterfall, until none

remains. A clause is poured over the waterfall by trying on it, in order, simpli�ca-

tion, elimination of destructors, cross-fertilization, generalization, and elimination

of irrelevance, until one succeeds. As soon as one succeeds, the returned clauses are

put into the top. If none succeeds, the clause is put into the pool. When the top

is empty the pool is cleaned up, i.e. some clauses subsumed by others are deleted.

Then a clause is removed from the pool and fed into the induction process: if it

1

This is made possible by means of axioms de�ning functional analogues of propositional connec-

tives and equality.
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Figure 1. The NQTHM waterfall

fails, then the entire proof fails, otherwise the resulting clauses are put into the top,

from which a clause is then poured over the waterfall as explained above. When

there is no clause left both in the top and in the pool, the initial conjecture has

been proved.

However, there is one exception to the top-level algorithm sketched above. If

the initial conjecture supplied by the user has been split in two or more clauses the

�rst time the induction stage is reached, the induction process is tried on the initial

conjecture and previous work on it is thrown away (see note on p. 90 of [4]). More

precisely, the top and the pool are emptied, the initial conjecture is converted to

clausal form (without expanding any abbreviation), and the resulting clauses are

put into the pool; these clauses together are fed into the induction process

2

, and

then things proceed as explained in the algorithm above.

Since the 1979 version of NQTHM (described in [4]), various extensions of the

prover have been built, including a linear arithmetic decision procedure [3], a goal-

directed proof-checker interface, meta functions, function parameters, a limited form

2

So, in fact the induction process receives a set of clauses, not just a clause, as input.
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of quanti�cation, and the use of hints for driving the heuristics. Apart from the

linear arithmetic procedure, none of these features of the system is considered in

this work.

2.1. The Simpli�er
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Figure 2. The modules of the NQTHM simpli�er

The simpli�er (i.e. the module in charge of the simpli�cation process) consists

of �ve component modules, depicted in Figure 2: typeset specialist (T.S.); rewriter

(REW.); linear arithmetic specialist (L.A.S.); sweeper (SW.); and high-level con-

troller (H.L.C.). Each arrow in Figure 2 indicates the call of a module by another

module; these calls will be explained in the sequel.

2.1.1. The Typeset Specialist

As previously explained, new types are axiomatized by means of the shell prin-

ciple. Thus, some terms denote objects of certain types: for instance, the term

(ADD1 (ADD1 (ADD1 (ZERO))))

3

denotes the natural number

4

3, whose type is called

3

We use this font for NQTHM function symbols and variable symbols, and we employ the

Boyer-Moore Lisp-like notation (f t

1

: : : t

n

) instead of a classical notation f(t

1

; : : : ; t

n

).

4

Natural numbers and other types are \built-in" in NQTHM, i.e. their axiomatization is present

in any theory, as if the shell principle had been applied for each built-in type.
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NUMBERP; the distinguished terms T and F respectively denote \truth" and \falsity",

whose type is respectively called T and F. A typeset is just a set of types. We say

that a term t has typeset, ts , iff under any interpretation of the variables of t , t

denotes some object whose type is in ts . A type alist is a set of pairs, each pair

consisting of a term and a typeset (with no distinct pairs containing a same term).

A type alist is used to represent some assumptions, namely that each term has the

associated typeset.

The typeset specialist can be used in two di�erent ways. In the �rst way it is

used to compute a typeset for a term, under the assumptions represented by a given

type alist. In the second way it is used to assume a term true or false under the

assumptions represented by a given type alist: the answer of the typeset specialist

is that the term must be true under the type alist, or that the term must be false

under the type alist, or that it may be either true or false; in the last case, two type

alists are also returned, obtained by adding to the input type alist the assumption

that the term is respectively true or false.

The two algorithms for computing typesets and assuming terms true or false

are mutually recursive. We do not go into the details of their working. For more

information about types and these algorithms, the reader is referred to [4] Chapter

VI.

2.1.2. The Rewriter

The rewriter takes as input a term and a context (i.e. a collection of logical and

control information, which we will partially describe below), and returns as output

a term (obtained by rewriting the input term) and a set of terms (constituting

linearization hypotheses; see next subsection). The context includes a substitution,

i.e. a �nite map from variables to terms: the term which is rewritten is in fact the

result of applying the substitution to the input term. This substitution is used to

avoid explicitly applying it in some recursive calls of the rewriter, but for simplicity

we assume that it is explicitly applied and we ignore it in the sequel. The context

also includes a modality of equivalence, i.e. a ag indicating if identical equivalence

or propositional equivalence must be preserved during rewriting: the �rst means

that two terms are equal (in the NQTHM logic), the second that one is equal to F

iff the other is such. Propositional equivalence is used to rewrite literals of clauses,

tests of IF

5

, and hypotheses of rewrite rules (see below); in all other cases identical

equivalence is used. The logical speci�cation satis�ed by the rewriter is that, under

the logical assumptions contained in the context and under the assumption that the

linearization hypotheses are true, the input term and the output term are equivalent

according to the input modality of equivalence.

The algorithm used by the rewriter can be roughly explained as follows (cf.

[4] Chapter IX and [3]). First, if the input term is a variable, or if it denotes a

5

IF is a distinguished ternary function symbol whose axiomatization, de�ned as obvious, is built-

in in NQTHM. Other function symbols whose axiomatizations are built-in in NQTHM, are EQUAL

(i.e. the functional analogue of equality), NOT (i.e. the functional analogue of negation), and LESSP

(i.e. the less-than relation over natural numbers).

5



constant of some type (e.g. a natural number), it is just returned. Otherwise, if

the input term is an IF-expression (i.e. a term whose top function symbol is IF),

we proceed as follows. The rewriter recursively calls itself to rewrite the test of

the IF with propositional equivalence. It is now time to say that the input context

of the rewriter includes a type alist. The typeset specialist is called to assume

true or false the rewritten test of the IF under the type alist of the context: if

it must be true or false, the left or right branch of the IF is recursively rewritten

and returned; otherwise, the left and right branches are both recursively rewritten

under contexts containing the appropriate one of the two type alists returned by the

typeset specialist, thus obtaining an IF-expression with the rewritten arguments.

Now the rewriter tries to apply one of the following rewrite rules (in this order) to

the obtained IF-expression:

(IF X Y Y) = Y;

(IF X X F) = X;

(IF X T F) = X:

Applying one such rule means �nding a substitution for X (and, if present, Y) which

makes the left term of the rule syntactically identical to our IF-expression, and in

this case the IF-expression is replaced with the result of applying the substitution

to the right term of the rule. However, the third rule is tried only if the test is

boolean (i.e. its typeset computed by the typeset specialist, under the type alist of

the context, is fT; Fg). The term obtained by the �rst applicable rule, if any, is then

returned; if no rule is applicable, the IF-expression is returned.

Otherwise, if the input term is an EQUAL-expression, we proceed as follows.

First the two arguments are recursively rewritten, thus obtaining a new EQUAL-

expression. If the two rewritten arguments are syntactically identical, the rewriter

returns T. Otherwise, some su�cient conditions (described in [4] p. 121) for the

falsity of the equality of the two terms are tested (e.g. one of these conditions is

that the typesets of the two terms have empty intersection): if at least one is veri�ed,

F is returned. Otherwise, the following rewrite rules are tried (the �rst is applied

only if the �rst argument is boolean), analogously to IF-expressions:

(EQUAL X T) = X;

(EQUAL X (EQUAL Y Z)) = (IF (EQUAL Y Z) (EQUAL X T) (EQUAL X F));

(EQUAL X F) = (IF X F T):

Let t be the result of the �rst applicable rule, or just the EQUAL-expression if no rule

is applicable. At this point, the rewriter tries to apply each rewrite rule present in

the current history (see below) to t , one after the other, until one is applicable: in

this case the result of the application of the rewrite rule is recursively rewritten; if

no rule has been applied, t is just returned.

6



Otherwise, if the input term is a recognizer expression (i.e. a term whose top

function symbol is a recognizer

6

, we proceed as follows. First the argument of the

expression is recursively rewritten. The typeset specialist is then called to compute

the typeset of the rewritten argument. If such a typeset only contains the type

associated to the recognizer, T is returned; if it does not contain that type, F is

returned. Otherwise, the rewriter tries to apply a rewrite rule in the current history

(see below): if one is found, the result is recursively rewritten and then returned;

otherwise the recognizer expression is just returned.

Otherwise, let the input term be (f t

1

: : : t

n

). First all the arguments are

recursively rewritten, obtaining t

0

1

; : : : ; t

0

n

. If f has a de�nition in the current history

(i.e. if f has been axiomatized by applying the de�nition principle) and if certain

heuristic conditions are met, (f t

0

1

: : : t

0

n

) is unfolded, and the rewriter returns the

result of recursively rewriting the body. From a logical point of view, a de�nition

of f is a formula

(f v

1

: : : v

n

) = body

where v

1

; : : : ; v

n

are distinct variables and body is a term satisfying certain condi-

tions; unfolding the term (f t

0

1

: : : t

0

n

) amounts to replacing it with the result of

applying to body the substitution mapping each v

i

to t

0

i

. If f has no de�nition or the

heuristic conditions are not met, then we try to apply a rewrite rule of the current

history (see below) to (f t

0

1

: : : t

0

n

). If one is found then the result is recursively

rewritten and then returned by the rewriter. Otherwise, if f has a de�nition and if

some heuristic conditions are met (di�erent from those above), our term is unfolded

and the rewriter returns the result of recursively rewriting the body; in case f has

no de�nition or these heuristic conditions are not met, (f t

0

1

: : : t

0

n

) is just returned.

We now explain how a rewrite rule of a history is applied to a term t . From a

logical point of view, a rewrite rule (axiom or lemma) represents a formula of two

possible forms:

l

1

^ � � � ^ l

n

! (lhs = rhs);

l

1

^ � � � ^ l

n

! (lhs $ rhs):

The terms l

1

; : : : ; l

n

, where n � 0, are called hypotheses of the rule; the formula

(lhs = rhs) or (lhs $ rhs) is called conclusion of the rule. Rules of the second form

may only be applied when t is rewritten preserving propositional equivalence. To

apply a rule, �rst a substitution is searched for which when applied to t makes it

syntactically identical to lhs ; if no such substitution exists, the rule is not applicable.

Otherwise, the hypotheses obtained by applying the substitution to l

1

; : : : ; l

n

are

recursively rewritten with propositional equivalence. If all of them rewrite to T,

then the rule is applicable, and the result of its application is obtained by applying

the substitution to rhs . To be more precise, if some hypothesis to be rewritten has

6

Each type axiomatized in NQTHM has an associated unary function symbol called recognizer

of the type, which \returns" T if the argument denotes an object of the type, F otherwise. For

example, NUMBERP is the recognizer for the type of natural numbers.
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NOT as top function symbol, then the argument is rewritten instead, and of course

it must be rewritten to F.

For ease of exposition, we have omitted an extremely important feature of the

algorithm of the rewriter, namely its call to the linear arithmetic specialist; we

now �ll this gap. It must be said that the context includes an objective, indicating

(if the modality of equivalence is propositional) that the term must be rewritten

to T or to F or to any of them; the objective has one of the �rst two values only

when rewriting a hypothesis (or its negation if the hypothesis is a NOT-expression)

of a rewrite rule. The call to the linear arithmetic specialist happens just before

trying to apply a rewrite rule to the term, if the objective is T or F, and if the

term or its negation (if the term is a NOT-expression) has EQUAL or LESSP as top

function symbol. The term (if the objective is F) or its negation (if the objective

is T) is fed into the linear arithmetic specialist to derive a contradiction (see next

subsection). If no contradiction is derived, we proceed to try rewrite rules, as

previously explained. If a contradiction is derived, a set of linearization hypotheses

(see next subsection) is returned to the rewriter, representing assumptions under

which the contradiction holds: in this case the rewriter returns T or F (according to

the objective), together with the linearization hypotheses. The rewriter collects all

the linearization hypotheses returned by its calls to the linear arithmetic specialist,

and returns them together with the rewritten term.

Finally, it must be said that when the rewriter returns a term, it �rst checks

if a typeset is associated to the term in the type alist of the context. If no typeset

is found, the term is returned as it is. Otherwise, if the typeset is fTg or fFg

then respectively T or F is returned instead; if the typeset does not include F and

the modality of equivalence is propositional, T is returned. Otherwise the term is

returned as it is.

2.1.3. The Linear Arithmetic Specialist

The linear arithmetic specialist implements a (partial) decider for linear in-

equalities over the natural numbers, which works by refutation and is based on

a simple rational-based procedure that formalizes the \high school idea of cross

multiplying and adding equalities to eliminate variables" (see [3] p. 10). A linear

inequality, called a polynomial, has the form

i + i

1

� t

1

+ � � �+ i

n

� t

n

� 0

where i is an integer called the constant, i

1

; : : : ; i

n

are integers called the coe�cients,

and t

1

; : : : ; t

n

are terms called the multiplicands. A polynomial is called vacuous iff

i � 0 and i

j

� 0 for each 1 � j � n (because it is trivially true); when a vacuous

polynomial is derived, it is discarded. A polynomial is called impossible iff i > 0

and i

j

� 0 for each 1 � j � n (because it is trivially false); when an impossible

polynomial is derived, a contradiction has been found.

The linear arithmetic specialist takes as input a type alist, a polynomial database

(i.e. a set of polynomials), and a set of terms, and returns as output a new poly-

nomial database. A database represents a set of assumptions, namely that all the

8



polynomials it contains are true. The output database is obtained by adding to

the input one the polynomial assumptions which can be derived by assuming all

the input terms true. The algorithm can be roughly described as follows: �rst,

the input terms are linearized (i.e. \converted" to polynomials), and the resulting

polynomials are pushed into the input database; then the database is augmented

with linear rules. We now explain in detail these steps.

Pushing some polynomials into a database consists in inserting the polynomials

into the database, then performing all the admissible (according to certain heuris-

tic conditions) cross-multiplications, thus generating further polynomials. Further-

more, each polynomial containing a multiplicand t with a positive coe�cient and

satisfying some heuristic conditions, is cross-multiplied with the non-negative as-

sumption for t , i.e. the polynomial

0� 1 � t � 0

(cf. [3] p. 45).

A history includes linear rules, which from a logical point of view are formulae

of two possible forms:

l

1

^ � � � ^ l

n

! (LESSP lhs rhs);

l

1

^ � � � ^ l

n

! (NOT (LESSP lhs rhs)):

The terms l

1

; : : : ; l

n

, where n � 0, are called the hypotheses of the rule; the term

(LESSP lhs rhs) or (NOT (LESSP lhs rhs)) is called the conclusion of the rule. Aug-

menting a database with linear rules consists in the following. All the linear rules of

the current history are examined, one after the other, to check if they satisfy certain

heuristic conditions. For each linear rule satisfying the heuristic conditions, the re-

sults of applying a substitution, which is determined during the satisfaction check of

the conditions, to the hypotheses l

1

; : : : ; l

n

are fed into the rewriter (together with

a context containing the input type alist of the linear arithmetic specialist, and the

propositional modality of equivalence). If all of them rewrite to T, then the results

of applying the substitution to lhs and rhs are fed into the rewriter obtaining lhs

0

and rhs

0

; then (LESSP lhs

0

rhs

0

) or (NOT (LESSP lhs

0

rhs

0

)) is linearized and the

resulting polynomials pushed into the database.

We do not go into the details of how terms are linearized to polynomials (see

[3] for further information). The important thing is that the linearization of a term

produces a set, whose cardinality is 2 or less, of sets of polynomials which derive

from assuming the term true: such a set represents a disjunction (across the set of

sets) of conjunctions (across the sets) of polynomials. If the set of sets is empty,

then no polynomial can be derived from the term. If it is a singleton set (i.e. we just

obtain a conjunction of polynomials), the resulting polynomials can be pushed into

the database. If it is a doubleton set, we have a disjunction of two conjunctions, and

each conjunction is called an alternative. In this case, since a disjunction cannot

be pushed into the database, the linear arithmetic specialist proceeds as follows.

9



The database is \saved", and the �rst alternative is pushed into the database,

which is then augmented with linear rules: if an impossible polynomial is derived in

this way, the saved database is restored and the second alternative can be pushed

into the database. If no impossible polynomial is found, the symmetric procedure is

performed, swapping �rst and second alternative. If again no impossible polynomial

is found, the pair of alternatives is just discarded and no polynomial is pushed into

the database.

7

For ease of exposition, in the above explanations we have not spoken about

linearization hypotheses. When a polynomial is produced by linearizing a literal,

also a set of terms, called linearization hypotheses, is produced, which constitute

conditions under which the polynomial derives from the term

8

. In fact each poly-

nomial has attached to it a set of linearization hypotheses, so that a polynomial

really represents an assertion

lh

1

^ � � � ^ lh

n

! i + i

1

� t

1

+ � � �+ i

n

� t

n

� 0

(where lh

1

; : : : ; lh

n

, with n � 0, are the linearization hypotheses). So, when two

polynomials are cross-multiplied, the union of the two sets of linearization hypothe-

ses is attached to the resulting polynomial. Furthermore, in case pushing one of two

alternatives into the database produces an impossible polynomial, the linearization

hypotheses of the impossible polynomial are added to those of all the polynomials

of the other alternative, before pushing it into the database.

Finally, something must be said which also completes the description of the

rewriter we gave in the previous subsection. The input context of the rewriter

also includes a polynomial database. When the rewriter calls the linear arithmetic

specialist to derive a contradiction, the database of the context is fed into the linear

arithmetic specialist; moreover, when this module calls the rewriter (e.g. to rewrite

the hypotheses of a linear rule to T) the current database is fed into the rewriter.

Of course, the linearization hypotheses returned by the rewriter consist of all the

linearization hypotheses of the impossible polynomials found when contradictions

are derived by the calls to the linear arithmetic specialist.

7

The arrow from the linear arithmetic specialist to the typeset specialist in Figure 2 refers to calls

performed during linearization.

8

For instance, the linearization of the term (LESSP I (SUB J I)), where SUB denotes subtraction,

produces the polynomial 1+(�1)�J+2�I� 0, and the linearization hypothesis (NOT (LESSP J I)).

The reason for such a linearization hypothesis is that in NQTHM the axiomatization of natural

numbers coerces to 0 all the terms not representing natural numbers (e.g. (SUB J I) \evaluates"

to 0 if the value \assigned" to I is greater than the value \assigned" to J). See [3] for further

information.
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2.1.4. The Sweeper

The sweeper takes as input a clause and a polynomial database (which, as we

will see in the next subsection, is obtained by assuming the clause false), and returns

as output a set of clauses whose conjunction implies the input clause.

Before describing the algorithm of this module, we must de�ne a couple of

concepts. Given a clause cl and some literals l

1

; : : : ; l

n

, the result of splitting cl on

l

1

; : : : ; l

n

(cf. [3] p. 55) is the set of n clauses obtained by adding each of l

1

; : : : ; l

n

to

cl . Given some clauses cl

1

; : : : ; cl

n

and a clause cl containing a literal l , the result

of splicing cl

1

; : : : ; cl

n

in place of l into cl (cf. [3] p. 56), is the set of n clauses

obtained by replacing l in cl with the literals of each of cl

1

; : : : ; cl

n

.

The sweeper performs the following procedure on each literal l of a clause cl ,

one after the other. Let cl = cl

0

_ l . First the sweeper calls the typeset specialist to

assume false all the other literals of the clause (i.e. the literals in cl

0

). If some of them

must be true, a contradiction has been derived, and so the clause can be eliminated,

because trivially true. Otherwise, the type alist, together with the database, the

propositional modality of equivalence, and the literal itself, are fed into the rewriter,

which returns a literal l

0

and some linearization hypotheses lh

1

; : : : ; lh

n

. From a

logical point of view, this means that

lh

1

^ � � � ^ lh

n

! (cl $ cl

0

_ l

0

):

If l

0

is T, cl is true under the linearization hypotheses, so that we must prove it

under the negation of each linearization hypothesis, i.e. we must prove

(:lh

1

! cl) ^ � � � ^ (:lh

n

! cl);

therefore cl is split on lh

1

; : : : ; lh

n

; the sweeper continues to perform the procedure

on the literals of all the obtained clauses. If l

0

is F, l can be eliminated from cl

under the linearization hypotheses, so that we must prove

lh

1

^ � � � ^ lh

n

! cl

0

;

as well as cl under the negation of each linearization hypothesis; therefore l is

replaced in cl with the negations of lh

1

; : : : ; lh

n

and cl is also split on lh

1

; : : : ; lh

n

;

the sweeper continues to perform the procedure on the literals of all these clauses.

If l

0

is neither T nor F, l

0

is transformed into clausal form according to the IF-

expressions present in it

9

, obtaining cl

1

; : : : ; cl

m

such that

l

0

$ cl

1

^ � � � ^ cl

m

;

so that we must prove

lh

1

^ � � � ^ lh

n

! (cl

0

_ cl

1

) ^ � � � ^ (cl

0

_ cl

m

);

9

For instance, a term (FN (IF X Y Z)) is transformed into ((NOT X) _ (FN Y)) ^ (X _ (FN Z)). For

details, see [4] Chapter IX.
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as well as cl under the negation of each linearization hypothesis; therefore the

negations of lh

1

; : : : ; lh

n

are all added to each of cl

1

; : : : ; cl

m

, and these clauses are

then spliced in place of l into cl ; furthermore cl is split on lh

1

; : : : ; lh

n

; the sweeper

continues to perform the same procedure on the literals of all the obtained clauses.

When the above procedure has been performed on all the literals of all the

clauses, the �nal set of clauses is returned.

2.1.5. The High-Level Controller

Before invoking any other module, the high-level controller eliminates all the

trivial equations from the clause given in input to the simpli�er. A trivial equation

is a literal of three possible forms

(NOT (EQUAL v t));

(NOT (EQUAL t v));

v ;

where t is a term and v a variable not occurring in t . Eliminating a trivial equation

of one of the two �rst forms consists in removing it from the clause and applying to

the other literals the substitution which maps v to t . Eliminating a trivial equation

of the third form consists in removing it from the clause and applying to the other

literals the substitution which maps v to F (because a formula v is equivalent to

the formula (NOT (EQUAL v F))).

After that, the typeset specialist is repeatedly called to assume false all the

literals of the clause. If any of them must be true, the clause is trivially true and

hence the simpli�er returns the empty set of clauses.

Otherwise, the obtained type alist, together with the empty database and all

the literals of the clause, are fed into the linear arithmetic specialist. If an impossible

polynomial is found, then the clause is split on the linearization hypotheses of the

impossible polynomial, and the resulting clauses are returned by the simpli�er.

10

Otherwise, the obtained database is searched for any two mated polynomials on

a term t whose conglomerated term is t

0

, which roughly means that the two polyno-

mials imply \t � t

0

^ t

0

� t" (cf. [3] p. 53{54). If some heuristic conditions are met

(see [3] p. 56), the clause is split on the union of the linearization hypotheses of the

two mated polynomials; furthermore the negations of these linearization hypothe-

ses, together with the negations of (NUMBERP t), (NUMBERP t

0

) and (EQUAL t t

0

), are

added to the clause itself. All the resulting clauses are returned by the simpli�er.

10

Actually, this procedure consists of two phases. In the �rst phase, so to say, only \part" of the

assumptions of the type alist are made \available" to the linear arithmetic specialist, in order

to accurately track which literals produced which polynomial and thus avoid tail biting. If a

contradiction is found, the simpli�er returns the result of splitting the clause on the linearization

hypotheses. Otherwise, the second phase begins: the database is \saved", and it is fed into the

linear arithmetic specialist together with all the assumptions of the type alist. If a contradiction is

found, we proceed as above. Otherwise, the old database is restored, and we proceed as explained

in the sequel.
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If no mated polynomials are found, then the database and the clause are fed

into the sweeper, and the returned set of clauses is also returned by the simpli�er.

3. An Overview of Our Formalism

We start by introducing our notation conventions. Let Y; Y

0

; Y

1

; Y

2

be sets.

We specify meta-variable conventions in the form: let y range over Y , which should

be read as: the meta-variable y and decorated variants such as y

0

, y

0

, : : : , range

over the set Y . Y

0

� Y

1

is the set of pairs with �rst component from Y

0

and second

component from Y

1

. If hy

1

; : : : ; y

n

i is an n-tuple, we use the notation hy

1

; : : : ; y

n

i # i

to denote the i-th element y

i

. Y

�

is the set of �nite sequences of elements of Y . We

write [y

1

; : : : ; y

n

] for the sequence of length n with i-th element y

i

(thus [ ] is the

empty sequence). u�v denotes the concatenation of the sequences u and v. P

!

(Y ) is

the set of �nite subsets of Y . The empty set is denoted by ;. We use the convention

that if y ranges over Y , then y ranges over Y

�

and ey ranges over P

!

(Y ). [Y

0

f

! Y

1

]

is the set of �nite maps from Y

0

to Y

1

. We use

~

; to denote the (unique) �nite

map with empty domain. [Y

0

! Y

1

] is the set of total functions, f , with domain,

Dom(f), Y

0

and range, Rng(f), contained in Y

1

. If f 2 [Y

0

! Y

1

] and g 2 [Y

1

! Y

2

],

then g � f 2 [Y

0

! Y

2

] is the composition of f and g: (g � f) = �y:g(f(y)). For

any function f , ffy 7! y

0

g is the function f

0

such that Dom(f

0

) = Dom(f) [ fyg,

f

0

(y) = y

0

, and f

0

(z) = f(z) for z 6= y; z 2 Dom(f).

3.1. Sequent Systems, Rules, and Reasoning Theories

A reasoning theory consists of a sequent system and some rules. The sequent

system speci�es a set of sequents (i.e. assertions or judgements for consideration),

and the rules specify deductions upon these sequents. In addition, the sequent

system also speci�es a set of constraints which can constrain the application of

rules. Both sequents and constraints may contain schematic parts, which can be

�lled in through instantiation maps, also speci�ed by the sequent system. Reasoning

theories can be glued together in order to specify, at the logical level, the integration

of di�erent systems.

A sequent system is a structure of the form

Ssys = hS ;C ; j=; I ; _[_]i:

S is the set of sequents. C is the set of constraints. j= � (P

!

(C ) � C ), is a

consequence relation on constraints, which abstractly represents a constraint solving

(satisfaction) mechanism. I is the set of instantiation maps (or instantiations); there

exists a binary composition operation � over instantiations, and I is closed under

composition. _[_] is the operation for application of instantiations to sequents and

to constraints, that is _[_] : S � I ! S and _[_] : C � I ! C . From now on, we

let s range over S , c range over C , and � range over I . In the following we describe

the requirements that such a structure must meet in order to qualify as a sequent

system.
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Constraint satisfaction must obey the basic laws for a (classical) consequence

relation, i.e. reexivity, monotonicity, and cut (cf. [1, 9]). We extend satisfaction to

a relation between sets of constraints by de�ning ec j= ec

1

i� (8c 2 ec

1

)(ec j= c). Let us

call schematic entities the entities that I acts on producing entities of the same sort.

The collection of schematic entities includes sequents and constraints, and it is closed

under formation of �nite sets or sequences, and �nite maps whose range is a set

of schematic entities with instantiation extended pointwise. One of the most basic

kinds of constraint is syntactic equality between schematic entities, used for example

in matching and uni�cation. We assume that equations s � s

0

between sequents

are among the constraints, and that instantiation propagates to the sequent terms,

that is (s � s

0

)[�] = s[�] � s

0

[�]. j= obeys, w.r.t. equations between sequents, the

usual laws for equality, i.e. reexivity, transitivity, and symmetry. Instantiations

preserve satisfaction, i.e. if ec j= c, then ec [�] j= c[�].

Let Ssys = hS ;C ; j=; I ; _[_]i be a sequent system, and let Id be a set of

identi�ers. Then the set of rules, Rule[Ssys ], over Ssys , and the set of rule sets,

Rset[Ssys ; Id ], over (Ssys ; Id) are de�ned by

Rule[Ssys ] = fR � (S

�

�S�P

!

(C )) (8hs ; s;ec i 2 R)(8� 2 I )(hs ; s;ec i[�] 2 R)g;

Rset[Ssys ; Id ] = [Id

f

! Rule[Ssys ]]:

If er 2 Rset[Ssys ; Id ] and id 2 Id we say that hs ; s;ec i 2 er (id) is an instance of

id with premisses, s , conclusion, s, and applicability conditions, ec . We may write

hid ; s ; s;ec i 2 er for hs ; s;ec i 2 er (id), and say that hid ; s ; s;ec i is an instance of er .

A rule generator is any subset rg of S

�

� S � P

!

(C ). The rule generated by rg is

the set rg[I]. An n-ary rule is a rule whose instances all have n premisses.

A reasoning theory, Rth , is a structure

Rth = hSsys ; Id ; er i

such that Ssys is a sequent system, Id is a set of identi�ers, and er 2 Rset[Ssys ; Id ]

is a rule set.

The di�erent reasoning modules which constitute a complex system (for exam-

ple NQTHM) are described, at the logical level, by di�erent reasoning theories: the

whole system is described by gluing together these reasoning theories using addi-

tional inference rules among sequents of di�erent reasoning theories, thus specifying

how deductions performed in the di�erent component modules relate to each other.

Let Rth

1

= hSsys

1

; Id

1

; er

1

i, : : :, Rth

n

= hSsys

n

; Id

n

; er

n

i be disjoint reasoning

theories, with Ssys

i

= hS

i

;C

i

; j=

i

; I

i

; _[_]

i

i and er

i

2 Rset[Ssys

i

; Id

i

] for 1 � i � n.

By disjointness we mean that the families of sets S

i

, C

i

, I

i

, and Id

i

for 1 � i � n

are each pairwise disjoint. Thus S

i

\ S

j

= ;, for 1 � i 6= j � n, etc.

The (disjoint) union, Ssys , of the sequent systems Ssys

i

for 1 � i � n is de�ned

by

Ssys =

[

1�i�n

Ssys

i

= hS ;C ; j=; I ; _[_]i
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where S =

S

1�i�n

S

i

, C =

S

1�i�n

C

i

, I = I

1

� : : :� I

n

. j=, _[_], and � are de�ned

as follows:

ec j= c i� ec \ C

i

j=

i

c if c 2 C

i

;

x[�] = x[� # i]

i

if x 2 S

i

[ C

i

;

� � �

0

= h� # 1 � �

0

# 1; : : : ; � # n � �

0

# ni:

It is easy to check that all the requirements for a sequent system are satis�ed.

Let Id =

S

1�i�n

Id

i

, and let Id

B

be a set of identi�ers disjoint from Id . Let

er =

S

1�i�n

er

i

, i.e. er (id) = er

i

(id) if id 2 Id

i

, and let er

B

2 Rset[Ssys ; Id

B

] be a

set of inference rules over the joined sequent system. The gluing of the Rth

i

via er

B

is de�ned by

Rth = glueRth([Rth

1

; : : : ;Rth

n

]; Id

B

; er

B

) = hSsys ; Id [ Id

B

; er [ er

B

i:

We say that Rth is a composite reasoning theory , with components Rth

i

, and glue

(Id

B

; er

B

). The elements of the rule sets er

i

are called the internal rules of Rth

i

.

The elements of er

B

are called bridge rules.

11

3.2. Reasoning Structures and Derivations

Reasoning structures represent proof fragments that occur during the construc-

tion of a proof. They provide two independent forms of exibility: horizontal and

vertical. Horizontal exibility provides exibility in mode of proof construction,

reuse of proof fragments, and schematic reasoning. It comes from being able to

stitch together fragments rather like a patchwork quilt and to incrementally re�ne

schematic information. Vertical exibility provides control over the level of immedi-

ately visible detail. It comes from nesting of reasoning structures and the ability to

encapsulate a substructure into a nesting link, or open up a nesting link. Vertical

exibility is motivated by the need to organize large complex structures hierarchi-

cally, to be able to examine them at di�erent levels of depth and detail, or to focus

on meaningful substructures.

We let Rth = hSsys ; Id ; er i be an arbitrary but �xed reasoning theory. We let

SN (sequent nodes) and LN (link nodes) be two disjoint countable sets, used to

construct reasoning structures. We give the de�nition of reasoning structures in

two steps. First we de�ne basic reasoning structures. They provide the horizontal

dimension of exibility. Next we add the vertical dimension of exibility.

A reasoning structure, rs, is a directed labelled graph. The nodes of rs are

partitioned into two sets: sequent nodes and link nodes. The edges of rs go from

11

In fact, it is often the case that some bridge rules contain some \new" constraints, i.e. constraints

not present in any component reasoning theory. So, technically speaking, our de�nition presents

some inadequacy to fully capture the process of composing reasoning theories. The re�nement

of our de�nition is part of future theoretical work.
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link nodes to sequent nodes or from sequent nodes to link nodes. Each link node

has a unique incoming node (the conclusion or goal) and the outgoing nodes (the

premisses or subgoals) are ordered as a sequence. Sequent nodes are labelled by

sequents and link nodes are labelled by justi�cations. One kind of justi�cation is a

rule application, represented by a rule identi�er and a set of constraints. We call link

nodes with such justi�cations, rule application links. Another kind of justi�cation

is a 4-tuple consisting of a set of constraints, an instantiation map, a sequence of

sequent nodes, and a reasoning structure. The instantiation map relates schematic

parts of the nested structure to those of its containing structure, as we will see

below. The sequent nodes are the nodes in the nested reasoning structure which

correspond to the premiss and conclusion nodes of the labelled link node. We call

link nodes with such justi�cations, nesting links.

Formally, the set, Rs

0

[Rth ;SN ;LN ], of basic (i.e. those with no nesting links)

reasoning structures is the set of structures

rs = hSn ;Ln; g ; sg ; sL; lLi

such that:

(1) Sn 2 P

!

(SN ) is the set of sequent nodes of rs , and Ln 2 P

!

(LN ) is the set of

link nodes of rs ;

(2) g : [Ln ! Sn ] maps each link node to its associated goal sequent node;

(3) sg : [Ln ! Sn

�

] maps each link node to its (possibly empty) associated se-

quence of subgoal sequent nodes;

(4) sL : [Sn ! S ] is the sequent node labelling map; if [sn

1

; : : : ; sn

n

] 2 Sn

�

, we

write sL([sn

1

; : : : ; sn

n

]) for [sL(sn

1

); : : : ; sL(sn

n

)];

(5) lL : [Ln ! [Id � P

!

(C )]] is the link node labelling map. This map must be

such that for ln 2 Ln if lL(ln) = hid ;ec i, s = sL(sg(ln)), and s = sL(g(ln)),

then hs ; s;ec

0

i 2 er (id) for some ec

0

such that ec j= ec

0

.

The set, Rs[Rth ;SN ;LN ], of reasoning structures is de�ned by allowing suc-

cessively deeper levels of nesting starting with basic reasoning structures at level 0,

as follows:

Rs[Rth;SN ;LN ] =

[

n2Nat

Rs

n

[Rth ;SN ;LN ]

where Rs

n

[Rth ;SN ;LN ] is the set of reasoning structures of level n. The reasoning

structures of level 0 are the basic reasoning structures de�ned above. The reasoning

structures of level n+ 1 are the structures

rs = hSn ;Ln; g ; sg ; sL; lLi

such that conditions (1)-(4) above hold, and

(5

n+1

) lL : [Ln ! [Id �P

!

(C )] + [P

!

(C )� I � (Sn

�

� Sn)�Rs

n

[Rth ;SN ;LN ]]]

such that if ln is a rule application link then condition (5) for basic reasoning
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structures holds and if ln is a nesting link with lL(ln) = hec ; �; hsn ; sni; rs

0

i and

rs

0

= hSn

0

;Ln

0

; g

0

; sg

0

; sL

0

; lL

0

i then sn � [sn] 2 (Sn

0

)

�

, and sL

0

(sn � [sn ])[�] =

sL(sg(ln)) � [sL(g(ln))].

Instantiations are applied to reasoning structures in the following way. If rs =

hSn ;Ln; g ; sg ; sL; lLi 2 Rs[Rth ;SN ;LN ] and � 2 I , then

rs[�] = hSn;Ln ; g ; sg ; sL[�]; lL

0

i

where, for ln 2 Ln

(ra) if lL(ln) = hid ;ec i, then lL

0

(ln) = hid ;ec [�]i,

(nest) if lL(ln) = hec ; �

1

; hsn ; sni; rs

1

i, then lL

0

(ln) = hec [�]; � � �

1

; hsn ; sni; rs

1

i.

A reasoning structure is a derivation of a conclusion sequent from a set of

assumption sequents, if it represents a traditional proof �gure. That is, if it satis�es

conditions (1)-(5) below.

(1) Each rule application link has no unsolved constraints.

(2) Each sequent node is the conclusion of at most one inference (link node).

(3) There is a unique sequent node that does not occur as the premiss of any

inference. The sequent labelling this node is the conclusion of the derivation.

The sequents labelling occurrences which are not the conclusion of any inference

are the open assumptions.

(4) The underlying graph is acyclic.

(5) For each nesting link, the associated tuple hec ; �; hsn ; sni; rsi is such that ec is

the empty set and the reasoning structure rs[�] is a derivation with conclusion

node sn and open assumption nodes sn .

A sequent s is Rth-derivable from a set of sequents es if there exists a derivation

rs 2 Rs[Rth ;SN ;LN ] with conclusion s and open assumptions contained in es . A

reasoning structure is a proof if it is a derivation with no open assumptions. A

sequent s is Rth-provable if it is Rth-derivable from the empty set of sequents.

It is possible to prove two theorems showing that, for consideration only of

derivability, nesting links and sharing of subderivations can be eliminated (vertical

and horizontal unfolding):

(1) if rs 2 Rs[Rth ;SN ;LN ] is a derivation of s from es then we can �nd a level 0

derivation rs

0

2 Rs

0

[Rth ;SN ;LN ] of s from es ;

(2) if rs is a level 0 derivation of s from es then there exists a level 0 derivation

rs

0

of s from es such that the directed graph underlying rs

0

is a tree.
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Figure 3. The Reasoning Theory Rth

NQTHM

4. The Reasoning Theory Rth

NQTHM

In order to make the module structure explicit, we present the NQTHM rea-

soning theory

Rth

NQTHM

= hSsys

NQTHM

; Id

NQTHM

; er

NQTHM

i

as a composite reasoning theory constructed out of some component reasoning the-

ories

Rth

NQTHM

= glueRth([Rth

U

;Rth

W

;Rth

SI

;Rth

SW

;Rth

T

;Rth

L

;Rth

R

; : : :]; Id

B

; er

B

)
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where each component reasoning theory corresponds to a reasoning module of

NQTHM, and er

B

is a set of bridge rules. The ellipses in the above de�nition are

placeholders for other reasoning theories which we do not specify, as we will explain

below.

Figure 3 provides an overview of the organization of Rth

NQTHM

. Rth

U

corre-

sponds to the top level module of NQTHM, i.e. the module in charge of interaction

with the user when conjectures to be proved are submitted to the system. Rth

W

corresponds to the master module of the waterfall, i.e. the module that maintains

the top and the pool, and controls the invocations of the inference processes. Rth

SI

corresponds to the high-level controller of the simpli�er. Finally Rth

SW

, Rth

T

,

Rth

L

, and Rth

R

respectively correspond to the sweeper, the typeset specialist, the

linear arithmetic specialist, and the rewriter. Each arrow in Figure 3 between com-

ponent reasoning theories corresponds to an invocation of one NQTHM module by

the other. These invocations are formalized in our framework using appropriate

bridge rules between the corresponding reasoning theories. Arrows of this kind are

labelled by our representation of the logical information passed (In) and returned

(Out) in the invocation (see the bridge rules below).

The reasoning theory level description of NQTHM can be done in many ways,

and at many levels of detail. The description given here is aimed at understanding

the integration of the modules of the simpli�er. We do not consider therefore the

other inference processes: we do not specify the reasoning theories corresponding

to modules of these other inference processes, and furthermore we do not specify

those bridge rules of er

B

which relate sequents belonging to such reasoning theories.

The sequent system and rules of Rth

NQTHM

are described in detail in the next

two subsections. The data structures manipulated by NQTHM contain additional

(non-logical) information used to control the heuristic proof strategies. We have

omitted this information for the present, as we are not treating issues of control in

this paper.

4.1. The Sequent System Ssys

NQTHM

The Rth

NQTHM

sequent system

Ssys

NQTHM

= hS

NQTHM

;C

NQTHM

; j=

NQTHM

; I

NQTHM

; _[_]

NQTHM

i

is de�ned as

Ssys

NQTHM

=

[

i2fU;W;SI;SW;T;L;R;:::g

Ssys

i

:

The sequents and constraints of each component sequent system are terms

12

of some

sort of a given algebraic speci�cation. We assume these terms are built with respect

12

Of course, here by \term" we do not mean those of the logic of NQTHM. However, no ambiguity

can arise because, apart from this paragraph, in the rest of the paper we use \term" exclusively

to refer to NQTHM terms.
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to a given sorted set of variables, so that instantiations are just �nite mappings

from variables to terms (of corresponding sorts), and instantiation composition,

instantiation application, and the identity instantiation, are de�ned as obvious.

4.1.1. Sequents

We structure the sequents of a component NQTHM sequent system as pairs

consisting of (our representation of) an NQTHM history h 2 H , as in NQTHM

all reasoning takes place in the context of some NQTHM history, and a current

conjecture. The history and the conjecture are separated by a turnstyle which is

labelled to identify the component sequent system.

U-sequents, i.e. sequents of the sequent system Ssys

U

, have the form

h `

U

t

where the conjecture is a term t 2 Trm . A U-sequent asserts that the formula

represented by t is a consequence of the theory de�ned by h.

W-sequents have the form

h `

W

e

cl

where the conjecture

e

cl 2 P

!

(Cl) is a set of clauses (considered conjunctively). The

interpretation of W-sequents is analogous to U-sequents.

SI-sequents have the form

h `

SI

cl  

e

cl

where in the conjecture cl and

e

cl roughly correspond to the input and output of

the simpli�er, respectively. An SI-sequent asserts that cl is a consequence of h if

e

cl

is such.

SW-sequents have the form

h `

SW

db;

e

cl  

e

cl

0

where the conjecture is decomposed into local context information and focus ex-

pression. The local context is a polynomial database db 2 Db (see below), and the

focus expression is

e

cl  

e

cl

0

where

e

cl represents the clauses whose literals are being

swept and

e

cl

0

represents the output of the sweeper. An SW-sequent asserts that

e

cl

is a consequence of h if

e

cl

0

is such under the assumptions in db.

T-sequents have two possible forms

h `

TS

T

ta ; t ! ts ;

h `

ASM

T

ta; t ! ta

T

; ta

F

; ar ;

where in the conjecture, the local context is a type alist ta 2 Ta and the focus

expression is: in the �rst case t ! ts where t 2 Trm is a term, and ts 2 Ts is a
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typeset; in the second case t ! ta

T

; ta

F

; ar where t 2 Trm is a term, ta

T

; ta

F

2 Ta

are two type alists, and ar 2 Ar is an assumption response, where Ar = fT; F; ANYg.

A T-sequent of the �rst form asserts that in h, under the assumptions in ta, t has

typeset ts . A T-sequent of the second form asserts that in h, under the assumptions

in ta , t must be true or must be false or may be any of them if (respectively) ar

is T or F or ANY, and in the last case ta

T

and ta

F

are the type alists obtained by

adding to ta the assumption that t is (respectively) true or false.

L-sequents have the form

h `

L

ta; pi ! pi

0

where the local context is a type alist ta, and the focus is pi ! pi

0

where pi ; pi

0

2 Pi

are two polynomial information structures (de�ned below). An L-sequent asserts

that (the linear inequalities represented by) pi

0

follows from pi in the theory h under

the typeset assumptions in ta .

R-sequents have the form

h `

R

ta ; db; t =

m

t

0

;

e

lh

where the local context consists of ta and db (representing the typeset assumptions

and polynomial database of the current rewriting context), and the focus expres-

sion consists of two terms t ; t

0

2 Trm, a modality of equivalence m 2 M (where

M = fI; Bg), and a set of terms

e

lh 2 P

!

(Trm) (which constitutes the linearization

hypotheses returned by the rewriter). An R-sequent asserts that in h, under the

assumptions in ta, db and

e

lh , t is identically equivalent (if m is I) or propositionally

(if m is B) equivalent to t

0

.

As it can be noticed from the above description, the sequents share some com-

ponent objects. For instance the conjectures of SI and W both contain objects of

P

!

(Cl ). The next table summarizes this sharing showing the objects composing

each sequent.

Sequents Components

U H ;Trm

W H ;P

!

(Cl)

SI H ;Cl ;P

!

(Cl)

SW H ;Db;P

!

(Cl)

T H ;Ta;Trm ;Ts ;Ar

L H ;Ta;Pi

R H ;Ta;Db;Trm ;M ;P

!

(Trm)

The sharing actually happens also at a lower level of detail. That is, the above

components share further sub-components, as we will explain in the sequel.

A clause is a �nite set of terms, so in fact Cl = P

!

(Trm).
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A polynomial p 2 Poly is an object

hi ; i

1

� t

1

+ � � � + i

n

� t

n

; flh

1

; : : : ; lh

m

gi

where n � 0, i ; i

1

; : : : ; i

n

are integers (the constant and the coe�cients), t

1

; : : : ; t

n

are terms (the multiplicands), and lh

1

; : : : ; lh

m

are terms (the linearization hypothe-

ses).

A database is a �nite set of polynomials, so in fact Db = P

!

(Poly).

A polynomial information structure pi 2 Pi is an object

hdb;

e

l ;

e

ep i

where db is a database,

e

l is a �nite set of literals (terms), and

e

ep is a �nite set of

�nite sets of polynomials. Roughly speaking, the polynomial information structures

manipulated by the linear arithmetic specialist consist of the current database, the

literals to be linearized, and the polynomials obtained by linearization, respectively.

A type alist ta 2 Ta is a �nite set of pairs ht ; tsi, where t is a term and

ts 2 Ts is a typeset, such that no two distinct pairs in ta have the same term as

�rst component.

A history h 2 H is a �nite sequence of objects representing events. We do

not go into the details of these objects. The only important thing is that a history

includes function de�nitions, rewrite rules, and linear rules.

A function de�nition def 2 Def is an object

hf ; [v

1

; : : : ; v

n

]; body i

where f is a function symbols, v

1

; : : : ; v

n

(n � 0) are distinct variables, and body is

a term satisfying certain properties.

A rewrite rule rr 2 Rr is an object

h[l

1

; : : : ; l

n

];m; lhs ; rhsi

where l

1

; : : : ; l

n

(n � 0) are terms (the hypotheses), m is a modality of equivalence,

and lhs and rhs are terms (the left- and right-hand side of the conclusion).

A linear rule lr 2 Lr is an object

h[l

1

; : : : ; l

n

]; ti

where l

1

; : : : ; l

n

(n � 0) are terms (the hypotheses), and t is a term of the form

(LESSP lhs rhs) or (NOT (LESSP lhs rhs)).

Finally, we have to de�ne another object that is used in the sequel. A substi-

tution sb 2 Sb is a �nite set of pairs hv ; ti, where v is a variable and t is a term,

such that no two distinct pairs in sb have the same variable as �rst component.
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4.1.2. Constraints

Analogously to sequents, we do not explicitly present the algebraic speci�cation

for constraints, but instead we present constraints as predicates (i.e. relations) over

certain sets. To ease readability, we present constraints along with the rules which

use them, in the following subsections.

4.2. The Rth

NQTHM

Rules

This subsection is devoted to the rules of Rth

NQTHM

. We start by describing

the internal rules of the Rth

NQTHM

component reasoning theories. We conclude

introducing the Rth

NQTHM

bridge rules. We describe the functions and predicates

we use when needed. To provide some intuition for each rule we explain the NQTHM

reasoning step the rule is intended to describe. Notice that we present these rules

using the classical forward form, i.e. from the premisses to the conclusion, even

though the rules are adirectional and their intended use in the prover is backward.

Each rule is presented using the following notation:

s

1

.

.

.

s

n

hid;ec i

s

where s; s

1

; : : : ; s

n

are sequents, ec is a set of constraints and id is a rule identi�er.

Schemas like the one above should be thought of as presenting the rule generators

for the rules considered. For instance the schema above presents the rule generator

fh[s

1

; : : : ; s

n

]; s;ec ig

of the rule whose identi�er is id.

4.2.1. The Rth

U

Internal Rules

The reasoning theory for the top level module of NQTHM only possesses one

internal rule, expabr, which formalizes the expansion of the abbreviations in the

conjecture supplied by the user.

h `

U

expabr (h; t)

hexpabr;;i

h `

U

t

The function

expabr : H � Trm ! Trm

returns the term obtained by expanding the abbreviations in the input term, under

the input theory.
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4.2.2. The Rth

W

Internal Rules

Most of the work performed by the waterfall process corresponds to its in-

vocations of the inference processes, and is therefore modeled using bridge rules.

What remains consists of two simple \internal" tasks that are described by the two

following rules.

The rule elimsbs formalizes the elimination of a subsumed clause in the pool.

h `

W

e

cl [ fclg

helimsbs;fSubsumes(cl;cl

0

)gi

h `

W

e

cl [ fclg [ fcl

0

g

In this rule the predicate

Subsumes � Cl � Cl

consists of all the pairs hcl ; cl

0

i of clauses such that cl

0

is subsumed by cl .

The rule qed expresses the fact that when there are no clauses (subgoals) left

both in the pool and in the top of the waterfall, the initial conjecture has been

proved.

hqed;;i

h `

W

;

4.2.3. The Rth

SI

Internal Rules

There are three internal rules in Rth

SI

which formalize the elimination of trivial

equations from the clause given to the simpli�er as input.

h `

SI

sbt(cl ; fhv ; tig) 

e

cl

hremNEvt;fVar(v);NotOcc(v ;t)gi

h `

SI

cl [ f(NOT (EQUAL v t))g  

e

cl

h `

SI

sbt(cl ; fhv ; tig) 

e

cl

hremNEtv;fVar(v);NotOcc(v ;t)gi

h `

SI

cl [ f(NOT (EQUAL t v))g  

e

cl

h `

SI

sbt(cl ; fhv ; Fig)  

e

cl

hremv;fVar(v)gi

h `

SI

cl [ fvg  

e

cl

In these rules the predicate

Var � Trm

consists of all the variables, and the predicate

NotOcc � Trm � Trm

consists of all the pairs ht

1

; t

2

i such that t

1

does not occur in t

2

. The function

sbt : Trm � Sb ! Trm

applies a substitution to a term. By abuse of notation we assume that the function

sbt is de�ned (by homomorphic lifting) also on structures built from terms, e.g.

clauses.
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4.2.4. The Rth

SW

Internal Rules

The unique internal rule we introduce below expresses the trivial fact that a

set of clauses is derivable from itself. Its intended use is when all the literals of

e

cl

have been swept and so the sweeper stops the reasoning process to \return" a value.

hreflsw;;i

h `

SW

db;

e

cl  

e

cl

4.2.5. The Rth

T

Internal Rules

In our formalization the logical services provided by the typeset specialist are

modeled by the two rules presented below.

htscomp;;i

h `

TS

T

ta ; t ! tscomp(h; ta ; t)

The function

tscomp : H � Ta � Trm ! Ts

computes the typeset associated to the input term under the input theory and the

assumptions in the input type alist.

hassumeTF;;i

h `

ASM

T

ta ; t ! asmT (h; ta ; t); asmF (h; ta ; t); aresp(h; ta ; t)

The functions

asmT : H �Ta � Trm ! Ta ;

asmF : H � Ta � Trm ! Ta ;

aresp : H � Ta � Trm ! Ar ;

respectively return the type alist obtained by adding to the input one the assumption

that the input term is true, the type alist obtained by adding to the input one the

assumption that the input term is false, and the assumption response T (if the input

term must be true) or F (if it must be false) or ANY (if it may be either true or false);

in case the term must be true or must be false, asmT and asmF just return the

input type alist.
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4.2.6. The Rth

L

Internal Rules

For the sake of readability we have organized these rules in subsections each

corresponding to a certain activity performed by the linear arithmetic specialist. In

the �rst subsection there are rules corresponding to general logical properties of the

data structures manipulated by this module. Then we describe the rules for manip-

ulating a polynomial database by linear arithmetic reasoning. Finally we introduce

the rules that are used for pushing literals into the polynomial database, i.e. for

adding to the polynomial database polynomials obtained from the linearization of

literals.

4.2.6.1. Logical Reasoning

The rule reflla states that a polynomial information structure can be derived

from itself. Its intended use is when the linear arithmetic specialist has �nished its

reasoning task and returns a value.

hreflla;;i

h `

L

ta ; pi ! pi

The rule transla states, informally speaking, that the linear arithmetic rea-

soning performed by the linear arithmetic module is transitive.

h `

L

ta ; pi

1

! pi

2

h `

L

ta ; pi

2

! pi

3

htransla;;i

h `

L

ta ; pi

1

! pi

3

4.2.6.2. Linear Arithmetic Reasoning

The rule crossmult adds to a polynomial database the polynomial obtained

by cross-multiplying and adding two polynomials.

hcrossmult;ec i

h `

L

ta ; hdb;

e

l ;

e

ep i ! hdb [ f(i

1


 p

1

� i

2


 p

2

)g;

e

l ;

e

ep i

where ec is the set of constraints

p

1

2 db

p

2

2 db.

The function


 : Int � Poly ! Poly

returns the polynomial obtained multiplying the constant and all the coe�cients of

the input polynomial by the input integer (and, of course, leaving the linearization

hypotheses unaltered). The function

� : Poly � Poly ! Poly
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returns the polynomial obtained from the two input polynomials by adding their

constants, \merging" their multiplicands and coe�cients in the obvious way, and

taking the union of their sets of linerization hypotheses

The rule addnna is used to add the non-negative-assumption for a term to a

database.

haddnna;;i

h `

L

ta ; hdb;

e

l ;

e

ep i ! hdb [ fh0;�1 � t ; ;ig;

e

l ;

e

ep i

The rule elimvacuous is used to get rid of vacuous polynomials.

helimvacuous;fVacuous(p)gi

h `

L

ta ; hdb [ fpg;

e

l ;

e

ep i ! hdb;

e

l ;

e

ep i

The predicate

Vacuous � Poly

consists of all the polynomials hi ; i

1

� t

1

+ � � �+ i

n

� t

n

;

e

lh i such that i � 0 and i

j

� 0

for each 1 � j � n.

4.2.6.3. Pushing Literals into the Polynomial Database

The activity of pushing a literal into a polynomial database can be divided in

two parts. First the literal is linearized. Then the resulting polynomials are inserted

into the database according to certain criteria, as explained in x2.

The rule linearize expresses the �rst part of this process (notice that in

this rule the result is put in the third component of the polynomial information

structure).

hlinearize;;i

h `

L

ta ; hdb;

e

l [ flg; ;i ! hdb;

e

l ; lin(h; ta ; l)i

The function

lin : H � Ta � Trm ! P

!

(P

!

(Poly))

returns the (positive) linearization of an NQTHM term (under the input theory

and type alist), which consists in a set of sets of polynomials. Notice that the

linearization procedure makes use of some typeset reasoning (cf. p. 44 [3]), in

fact lin also receives the current type alist as input; this invocation of the typeset

specialist by the linear arithmetic specialist is thus hidden in lin and not formalized

as a bridge rule.

The rules shown below formalize the process of adding the result of the lin-

earization of a literal to the database. The rule pushconj treats the case in which
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the result of the linearization is a singleton set consisting of a set of polynomials.

In this case the polynomials are simply added to the database.

hpushconj;;i

h `

L

ta; hdb;

e

l ; fep gi ! hdb [ ep ;

e

l ; ;i

As already explained in x2, in case the result of the linearization is a pair of

alternatives (i.e. it consists in a doubleton set containing two sets of polynomials),

the linear arithmetic specialist employs the following strategy. If pushing the sec-

ond alternative into the database and augmenting with linear rules produces an

impossible polynomial, then the �rst alternative is pushed into the database (and

the second one is discarded), after having added the linearization hypotheses of the

impossible polynomial found to those of each polynomial of the �rst alternative;

this is formalized by the rule pushdisj1. Otherwise, if pushing the �rst alterna-

tive into the database and augmenting with linear rules produces an impossible

polynomial, then the second alternative is pushed into the database (and the �rst

one is discarded), after having added the linearization hypotheses of the impossible

polynomial found to those of each polynomial of the second alternative; this is for-

malized by the rule pushdisj2. Otherwise, the alternatives are simply discarded,

as formalized by the rule elimdisj.

h `

L

ta ; hdb [ ep

2

; ;; ;i ! hdb

0

[ fpg; ;; ;i

hpushdisj1;ec i

h `

L

ta; hdb;

e

l ; fep

1

; ep

2

gi ! hdb [ addlhyps(ep

1

;

e

lh );

e

l ; ;i

where ec is the set of constraints

Impossible(p)

p � hi ; i

1

� t

1

+ � � �+ i

n

� t

n

;

e

lh i.

The predicate

Impossible � Poly

consists of all the polynomials hi ; i

1

� t

1

+ � � �+ i

n

� t

n

;

e

lh i such that i > 0 and i

j

� 0

for each 1 � j � n. The function

addlhyps : P

!

(Poly)� P

!

(Trm)! P

!

(Poly)

adds the input set of terms to the linearization hypotheses of each polynomial of

the input set of polynomials.

h `

L

ta ; hdb [ ep

1

; ;; ;i ! hdb

0

[ fpg; ;; ;i

hpushdisj2;ec i

h `

L

ta; hdb;

e

l ; fep

1

; ep

2

gi ! hdb [ addlhyps(ep

2

;

e

lh );

e

l ; ;i
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where ec is the set of constraints

Impossible(p)

p � hi ; i

1

� t

1

+ � � �+ i

n

� t

n

;

e

lh i.

helimdisj;;i

h `

L

ta ; hdb;

e

l ; fep

1

; ep

2

gi ! hdb;

e

l ; ;i

4.2.7. The Rth

R

Internal Rules

We have organized the internal rules of Rth

R

in various subsections. In the

�rst subsection we present rules describing some general logical properties of the

rewriting activity. Then there are two subsections respectively describing rules for

the manipulation of IF-expressions and EQUAL-expressions. Finally there are two

subsections devoted to the two most important activities performed by the rewriter,

i.e. the use of lemmas and axioms to rewrite expressions, and the opening up of

functions.

4.2.7.1. Logical Reasoning

The rule reflr states the law of reexivity for the reasoning performed by the

rewriter.

hreflr;;i

h `

R

ta ; db; t =

m

t ; ;

The rule transr expresses the law of transitivity for the reasoning performed

by the rewriter.

h `

R

ta; db; t

1

=

m

t

2

;

e

lh

0

h `

R

ta ; db; t

2

=

m

t

3

;

e

lh

00

htransr;;i

h `

R

ta ; db; t

1

=

m

t

3

;

e

lh

0

[

e

lh

00

Notice how the information is propagated in the rule transr: the linearization

hypotheses used in the subgoals are collected in the conclusion (like dependencies

in Natural Deduction systems).

The rule congr formalizes the law of congruence for the reasoning performed

by the rewriter.

h `

R

ta ; db; t

i

=

I

t

0

i

;

e

lh

hcongr;;i

h `

R

ta ; db; (f t

1

: : : t

i

: : : t

n

) =

m

(f t

1

: : : t

0

i

: : : t

n

) ;

e

lh

Notice that the subterm is rewritten using the identity preserving modality.

The meaning of the rule abstractr is that identical rewriting is \stronger"

then propositional rewriting, i.e. results obtained preserving identical equivalence
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of terms can be safely assumed when the propositional equivalence of terms has to

be maintained.

h `

R

ta; db; t =

I

t

0

;

e

lh

habstractr;;i

h `

R

ta; db; t =

B

t

0

;

e

lh

4.2.7.2. Rewriting IF-Expressions

The rule ifTest presented below describes how the test of an IF-expression is

rewritten. Notice that the modality of rewriting preserves the propositional equiv-

alence of the test.

h `

R

ta; db; t =

B

t

0

;

e

lh

hifTest;;i

h `

R

ta; db; (IF t t

1

t

2

) =

m

(IF t

0

t

1

t

2

) ;

e

lh

The next rules formalize the application of two of the three rewrite rules for

IF explained in x2 (the third rewrite rule is formalized by means of a bridge rule

because it involves a call of the typeset specialist; see below).

hif1;;i

h `

R

ta ; db; (IF t

1

t

2

t

2

) =

m

t

2

; ;

hif2;;i

h `

R

ta ; db; (IF t t F) =

m

t ; ;

4.2.7.3. Rewriting EQUAL-Expressions

The rule refEQ states the simple property of reexivity satis�ed by the function

EQUAL.

hrefEQ;;i

h `

R

ta ; db; (EQUAL t t) =

m

T ; ;

The rules eq1 and eq2 formalize two of the rewrite rules for EQUAL explained in

x2 (the third rewrite rule is formalized by means of a bridge rule because it involves

a call of the typeset specialist; see below).

heq1;;i

h `

R

ta; db; (EQUAL t

1

(EQUAL t

2

t

3

)) =

m

t ; ;

where t is the term (IF (EQUAL t

2

t

3

) (EQUAL t

1

T) (EQUAL t

1

F)):

heq2;;i

h `

R

ta; db; (EQUAL t F) =

m

(IF t F T) ; ;
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4.2.7.4. Rewriting a Term with Lemmas

The rule rewR formalizes the application of a rewrite rule.

[h `

R

ta ; db; sbt(l

i

; sb) =

B

T ;

e

lh

i

1 � i � n]

hrewR;ec i

h `

R

ta ; db; sbt(lhs ; sb) =

m

sbt(rhs ; sb) ;

S

n

i=1

e

lh

i

where ec is the set of constraints

h[l

i

1 � i � n];m; lhs ; rhsi 2 rr�rules(h).

The function

rr�rules : H ! P

!

(Rr )

returns the set of rewrite rules of the input history. Notice that the hypotheses of

the rewrite rule are rewritten preserving propositional equivalence.

When a hypothesis has the form (NOT l), the rewriter tries to rewrite l to F

instead, as formalized by the rule neghyp.

h `

R

ta ; db; l =

B

F ;

e

lh

hneghyp;;i

h `

R

ta ; db; (NOT l) =

B

T ;

e

lh

4.2.7.5. Unfolding Function De�nitions

The rule applydef expresses the unfolding of a function de�nition.

happlydef;ec i

h `

R

ta; db; (f t

1

: : : t

n

) =

I

sbt(body ; fhv

1

; t

1

i; : : : ; hv

n

; t

n

ig) ; ;

where ec is the set of constraints

hf; [v

1

; : : : ; v

n

]; bodyi 2 defs(h).

The function

defs : H ! P

!

(Def )

returns the set of function de�nitions of the input history.

4.2.8. The Rth

NQTHM

Bridge Rules

In this subsection we formalize the integration of the NQTHM modules in terms

of bridge rules of the Rth

NQTHM

reasoning theory. The presentation of these bridge

rules is organized in various subsections, each corresponding to the calls performed

by a module of NQTHM to other modules.

31



4.2.8.1. The Calls by the Top Level Module

The invocation of the waterfall by the top level module of NQTHM is repre-

sented by the rule clausify. The arrow from Rth

U

to Rth

W

in Figure 3 shows the

logical information involved in this invocation. The input for the waterfall is a set

of clauses

e

cl obtained from the clausi�cation of either the result of expanding the

abbreviations in the initial conjecture (at the beginning of a tentative proof), or the

initial conjecture itself (in case induction is performed upon the initial conjecture).

The output from the waterfall is a yes/no answer. Informally speaking we can say

that the waterfall process never provides partial proofs for conjectures, but only

reports a success or a failure in determining provability.

h `

W

cnf (t)

hclausify;;i

h `

U

t

The function

cnf : Trm ! P

!

(Cl)

provides the translation from the Rth

U

's world, that uses terms to express conjec-

tures, to the Rth

W

's world, that manipulates sets of clauses: the returned set of

clauses constitutes the conjunctive normal form of the input term.

4.2.8.2. The Calls by the Waterfall

The invocation of the simpli�er by the waterfall is formalized by the rule

callsimp (see the arrow from Rth

W

to Rth

SI

in Figure 3).

h `

SI

cl  

e

cl

1

h `

W

e

cl [

e

cl

1

hcallsimp;;i

h `

W

e

cl [ fclg

Notice that informally speaking callsimp can be interpreted in a backward way as

a substitution of the subgoal cl with the subgoals in

e

cl

1

.

4.2.8.3. The Calls by the High-level Controller

The rule tacontr expresses the fact that a contradiction has been derived by

typeset reasoning, when building the typeset alist obtained from the negation of the

literals of clause to be simpli�ed (see the arrow from Rth

SI

to Rth

T

in Figure 3).

This means that the input clause is true.

[h `

ASM

T

ta

F

i�1

; l

i

! ta

T

i

; ta

F

i

; ar

i

1 � i � n]

htacontr;fT2far

1

;:::;ar

n

ggi

h `

SI

fl

1

; : : : ; l

n

g  ;

where ta

F

0

is ;.

The rule dbcontr expresses the fact that a contradiction has been derived by

linear arithmetic reasoning, when building the polynomial database, after having
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built the type alist obtained by the negation of the input clause of the simpli�er

(see the arrow from Rth

SI

to Rth

T

and that from Rth

SI

to Rth

L

, in Figure 3). This

means that the simpli�er returns the sets of clauses obtained by splitting the input

clause on the linearization hypotheses of the impossible polynomial found.

[h `

ASM

T

ta

F

i�1

; l

i

! ta

T

i

; ta

F

i

; ar

i

1 � i � n]

h `

L

ta

F

n

; h;; fneg(l

1

); : : : ;neg(l

n

)g; ;i ! hdb [ fpg; ;; ;i

hdbcontr;ec i

h `

SI

fl

1

; : : : ; l

n

g  split(fl

1

; : : : ; l

n

g;

e

lh )

where ta

F

0

is ;, and ec is the set of constraints

Impossible(p)

p � hi ; i

1

� t

1

+ � � �+ i

m

� t

m

;

e

lh i.

The function

neg : Trm ! Trm

returns t is the input term has the form (NOT t), returns (NOT t) (where t is the

input term) otherwise. The function

split : Cl � P

!

(Trm)! P

!

(Cl)

splits a clause on a set of literals, i.e.

split(cl ;

e

l ) =

[

l2

e

l

fcl [ flgg:

The rule findEq corresponds to the introduction of an equality derived from

the polynomial database into the input clause of the simpli�er, after building the

type alist and the polynomial database obtained by the negation of the clause (see

the arrows from Rth

SI

to Rth

T

and from Rth

SI

to Rth

L

in Figure 3).

[h `

ASM

T

ta

F

i�1

; l

i

! ta

T

i

; ta

F

i

; ar

i

1 � i � n]

h `

L

ta

F

n

; h;; fneg(l

1

); : : : ;neg(l

n

)g; ;i ! hdb [ fp

1

; p

2

g; ;; ;i

hfindEq;ec i

h `

SI

fl

1

; : : : ; l

n

g  addhyps(fl

1

; : : : ; l

n

g;

e

lh ) [ split(fl

1

; : : : ; l

n

g;

e

lh

0

)

where ta

F

0

is ;, and ec is the set of constraints

Mates(p

1

; p

2

; t ; t

0

)

p

1

� hi

1

; i

1

1

� t

1

1

+ � � � + i

1

m

1

� t

1

m

1

;

e

lh

1

i

p

2

� hi

2

; i

2

1

� t

2

1

+ � � � + i

2

m

2

� t

2

m

2

;

e

lh

2

i

e

lh �

e

lh

1

[

e

lh

2

[ f(NUMBERP t)g [ f(NUMBERP t

0

)g [ f(EQUAL t t

0

)g

e

lh

0

�

e

lh

1

[

e

lh

2

.
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The function

addhyps : Cl � P

!

(Trm)! Cl

returns the union of the input clause with the negations of all the literals in the

input set. The predicate

Mates � Poly � Poly � Trm � Trm

consists of all the 4-tuples hp

1

; p

2

; t ; t

0

i such that p

1

and p

2

are mates on t and t

0

is

the conglomerated term corresponding to t , as de�ned at p. 53{54 of [3].

The rule swInit represents the invocation of the sweeper by the high-level

controller of the simpli�er, after having built the polynomial database obtained by

the negation of the input clause. The arrow from Rth

SI

to Rth

SW

in Figure 3 shows

the input-output behavior of the invocation. The input is the input clause cl and

the polynomial database db. The output is a set of clauses

e

cl .

[h `

ASM

T

ta

F

i�1

; l

i

! ta

T

i

; ta

F

i

; ar

i

1 � i � n]

h `

L

ta

F

n

; h;; fneg(l

1

); : : : ;neg(l

n

)g; ;i ! hdb; ;; ;i

h `

SW

db; ffl

1

; : : : ; l

n

gg  

e

cl

hswInit;;i

h `

SI

fl

1

; : : : ; l

n

g  

e

cl

where ta

F

0

is ;.

4.2.8.4. The Calls by the Sweeper

The following rule formalizes the fact that when the type alist obtained by

assuming false all the literals of a clause except the one which is being swept, the

clause is trivially true and can be eliminated (see the arrow from Rth

SW

to Rth

T

in Figure 3).

[h `

ASM

T

ta

F

i�1

; l

i

! ta

T

i

; ta

F

i

; ar

i

1 � i � n]

h `

SW

db;

e

cl  

e

cl

0

hswTcontr;fT2far

1

;:::;ar

n

ggi

h `

SW

db;

e

cl [ ffl

1

; : : : ; l

n

; lgg  

e

cl

0

where ta

F

0

is ;.

In NQTHM the sweeper invokes the rewriter in order to rewrite literals con-

tained in the clauses which are being swept. The arrow from Rth

SW

to Rth

R

in

Figure 3 denotes this invocation. The input is a polynomial database db, a type

alist ta , and a literal l . The output is a literal l

0

(obtained rewriting l preserving

propositional equivalence) and a set of linearization hypotheses

e

lh .

[h `

ASM

T

ta

F

i�1

; l

i

! ta

T

i

; ta

F

i

; ar

i

1 � i � n]

h `

R

ta

F

n

; db; l =

B

l

0

;

e

lh

h `

SW

db;

e

cl [

e

cl

00

[ split(fl

1

; : : : ; l

n

g;

e

lh ) 

e

cl

0

hswLit;;i

h `

SW

db;

e

cl [ ffl

1

; : : : ; l

n

; lgg  

e

cl

0
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where ta

F

0

is ;, and

e

cl

00

is splice(addhyps(fl

1

; : : : ; l

n

g;

e

lh ); ifclausify(l

0

)). The func-

tion

splice : Cl � P

!

(Cl)! P

!

(Cl)

splices a set of clauses on a clause, i.e.

splice(cl ;

e

cl) =

[

cl

0

2

e

cl

fcl [ cl

0

g:

The function

ifclausify : Trm ! P

!

(Cl)

converts the input term to clausal form according to the IF-expressions present in

it; if the term is T then ; is returned (and not ffTgg), if it is F then f;g is returned

(and not ffFgg).

4.2.8.5. The Calls by the Rewriter

The following two rules formalize the invocation of the linear arithmetic spe-

cialist by the rewriter (see the arrow from Rth

R

to Rth

L

in Figure 3).

h `

L

ta ; hdb; fneg(t)g; ;i ! hdb [ fpg; ;; ;i

hrewT;ec i

h `

R

ta; db; t =

B

T ;

e

lh

where ec is the set of constraints

Impossible(p)

p � hi ; i

1

� t

1

+ � � �+ i

n

� t

n

;

e

lh i.

h `

L

ta; hdb; ftg; ;i ! hdb [ fpg; ;; ;i

hrewF;ec i

h `

R

ta; db; t =

B

F ;

e

lh

where ec is the set of constraints

Impossible(p)

p � hi ; i

1

� t

1

+ � � �+ i

n

� t

n

;

e

lh i.

The invocation of the typeset specialist by the rewriter is represented in Figure 3

by the two arrows from Rth

R

to Rth

T

. In both cases, the input is a type alist and a

term; the output is either a type set (if the invocation requires the computation of

the typeset of the term) or two type alists and an assumption response (if instead

the invocation requires assuming the term true or false). The following bridge rules

describe the possible invocations of the typeset specialist by the rewriter.

35



The rules recT and recF respectively express the fact that a term (r t), where

r is a recognizer of a type r in the current history, is true or false under the current

typeset assumptions.

h `

TS

T

ta ; t ! frg

hrecT;;i

h `

R

ta; db; (r t) =

m

T ; ;

h `

TS

T

ta ; t ! ts

hrecF;fts\frg�;gi

h `

R

ta; db; (r t) =

m

F ; ;

The following rules are used to recursively rewrite the branches of an IF-

expression.

h `

ASM

T

ta; t ! ta ; ta ; T

h `

R

ta; db; t

1

=

m

t

0

1

;

e

lh

hifLeft;;i

h `

R

ta ; db; (IF t t

1

t

2

) =

m

t

0

1

;

e

lh

h `

ASM

T

ta ; t ! ta; ta ; F

h `

R

ta ; db; t

2

=

m

t

0

2

;

e

lh

hifRight;;i

h `

R

ta; db; (IF t t

1

t

2

) =

m

t

0

2

;

e

lh

h `

ASM

T

ta ; t ! ta

T

; ta

F

; ANY

h `

R

ta

T

; db; t

1

=

m

t

0

1

;

e

lh

1

h `

R

ta

F

; db; t

2

=

m

t

0

2

;

e

lh

2

hifBranches;;i

h `

R

ta ; db; (IF t t

1

t

2

) =

m

(IF t t

0

1

t

0

2

) ;

e

lh

1

[

e

lh

2

The rule if3 formalizes the third rewrite rule for IF.

h `

TS

T

ta ; t ! fT; Fg

hif3;;i

h `

R

ta ; db; (IF t T F) =

m

t ; ;

The rule eq3 formalizes the �rst rewrite rule for EQUAL.

h `

TS

T

ta ; t ! fT; Fg

heq3;;i

h `

R

ta ; db; (EQUAL t T) =

m

t ; ;
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The rule npe is used to rewrite to F an EQUAL-expression if its two arguments

cannot be possibly equal.

h `

TS

T

ta; t

1

! ts

1

h `

TS

T

ta; t

2

! ts

2

hnpe;fNpe(t

1

;t

2

;ts

1

;ts

2

)gi

h `

R

ta ; db; (EQUAL t

1

t

2

) =

m

F ; ;

The predicate

Npe � Trm � Trm � Ts � Ts

consists of all the 4-tuples ht

1

; t

2

; ts

1

; ts

2

i such that certain conditions are veri�ed,

which are su�cient to guarantee that the two terms t

1

and t

2

cannot be equal (in

the logic of NQTHM), provided ts

1

and ts

2

are their typesets (cf. [4] p. 121).

The following rules are used to return T or F from the rewriter if the assumed

typeset of the term to be returned satis�es certain conditions, as explained in x2.

h `

TS

T

ta ; t ! fTg

hretT;;i

h `

R

ta ; db; t =

m

T ; ;

h `

TS

T

ta ; t ! fFg

hretF;;i

h `

R

ta ; db; t =

m

F ; ;

h `

TS

T

ta ; t ! ts

hretTB;fts\fFg�;gi

h `

R

ta ; db; t =

B

T ; ;

4.2.8.6. The Calls by the Linear Arithmetic Specialist

The arrow from Rth

L

to Rth

R

in Figure 3 denotes the invocation of the rewriter

by the linear arithmetic specialist in order to augment the current polynomial

database. In our formalization the input is the current polynomial database and

type alist. The output is a term to be linearized and a set of linearization hypotheses

to be added to the linearization. The rule augment expresses this invocation.

[h `

R

ta; db; sbt(l

i

; sb) =

B

T ;

e

lh

i

1 � i � n]

h `

R

ta; db; sbt(lhs ; sb) =

I

lhs

0

;

e

lh

n+1

h `

R

ta ; db; sbt(rhs ; sb) =

I

rhs

0

;

e

lh

n+2

h `

L

ta; hdb; f(LESSP lhs

0

rhs

0

)g; ;i ! hdb; ;; fep gi

haugment;ec i

h `

L

ta ; hdb;

e

l ;

e

ep i ! hdb [ addlhyps(ep ;

S

n+2

i=1

e

lh

i

);

e

l ;

e

ep i

where ec is the set of constraints

h[l

i

1 � i � n]; (LESSP lhs rhs)i 2 lr�rules(h).

The function

lr�rules : H ! P

!

(Lr )

returns the set of linear rules of a theory. (We assume there is a rule analogous to

augment for linear rules whose conclusion is (NOT (LESSP t

1

t

2

)).)
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5. Conclusions and Future Work

As already mentioned, the logical component of NQTHM can be formalized as

an OMRS in many di�erent ways, i.e. by means of many di�erent reasoning theories.

For instance, using a reasoning theory closely resembling the formal system for the

logic of NQTHM (as presented in [5]), would have been a perfectly legitimate choice.

However, since our framework allows maximum exibility in the de�nition of sequent

systems and rules, we have preferred the reasoning theory presented in x4, both

because its sequents and rules are \closer" to (the logical part of) the data structures

and their elaborations in the actual implementation of the prover, and because it

clearly exhibits the modularity of the prover. A major advantage of this choice

is also that it can serve to give a clear and precise account of how, at the logical

level, the 1979 version of NQTHM was enhanced by adding the linear arithmetic

procedure: such an account can be given by �rst presenting a reasoning theory

for the initial system and a reasoning theory for the stand-alone linear arithmetic

procedure, then showing how they are modi�ed and glued together (see [7]).

As we also mentioned at the beginning of x4, our framework allows a formaliza-

tion of the logic component of NQTHM at the desired level of detail. The reasoning

theory in x4 formalizes di�erent parts of the system at di�erent levels of detail (e.g.

the typeset specialist is substantially treated as a black box, while the rewriter is

quite detailed), in order to show the exibility of the approach.

Future theoretical work for the logic component of OMRS will be mainly con-

cerned with a re�nement of the formalism to allow for reasoning theories to be

parametric, and for de�ning the gluing of reasoning theories as their instantiation

with actual parameters and then union of the obtained sequent systems and rules.

In fact we think parameterization is a natural way to formally capture \openness"

of systems, as di�erent parameters may allow a same reasoning module to be inte-

grated in di�erent ways with di�erent modules. Parameterization would also solve

the current inadequacy about the introduction of \new" constraints for bridge rules,

which we mentioned in a footnote in x3.1.

A theoretical framework has been also developed for the control component of

OMRS [6], and used to formalize the inference strategies of the NQTHM simpli�er

[6]. A paper describing the control component of NQTHM as an OMRS is about to

be written.
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