
A Formalization of the ABNF Notation
and a Verified Parser of ABNF Grammars

Alessandro Coglio

Kestrel Institute, Palo Alto, California, USA
coglio@kestrel.edu

http://www.kestrel.edu/∼coglio

Abstract. Augmented Backus-Naur Form (ABNF) is a standardized
formal grammar notation used in several Internet syntax specifications.
This paper describes (i) a formalization of the syntax and semantics of
the ABNF notation and (ii) a verified parser that turns ABNF grammar
text into a formal representation usable in declarative specifications of
correct parsing of ABNF-specified languages. This work has been devel-
oped in the ACL2 theorem prover.

Keywords: ABNF · Parsing · Verification

1 Problem, Contribution, and Outlook

Augmented Backus-Naur Form (ABNF) is a standardized formal grammar no-
tation [9,18] used in several Internet syntax specifications, e.g. HTTP [11], URI
[6], and JSON [8]. Since inadequate parsing may enable security exploits such
as HTTP request smuggling [19], formally verified parsers of ABNF-specified
languages are of interest. It is important to ensure that the formal specifications
against which the parsers are verified are faithful to the ABNF grammars.

The work described in this paper contributes to this goal by providing:

1. A formalization of the syntax and semantics of the ABNF notation.
2. A verified parser that turns ABNF grammar text (e.g. the grammar of

HTTP) into a formal representation usable in declarative specifications of
correct parsing (e.g. correct HTTP parsing).

This work has been developed in the ACL2 theorem prover [14]. The develop-
ment is available [24, books/kestrel/abnf], is thoroughly documented [25, abnf],
and includes examples of use of the parser on several Internet grammars such as
HTTP, URI, and JSON. It also includes a collection of operations to compose
ABNF grammars and to check properties of them, but this paper does not de-
scribe these operations. Some of the excerpts of the development shown in this
paper are slightly simplified for brevity.

Future work includes the development of verified parsers for ABNF-specified
languages such as JSON and HTTP, and of a generator of verified parsers from
ABNF grammars.

http://www.kestrel.edu/~coglio


2 A. Coglio

2 Background

2.1 ABNF

ABNF adds conveniences and makes slight modifications to Backus-Naur Form
(BNF) [3], without going beyond context-free grammars.

Instead of BNF’s angle-bracket notation for nonterminals, ABNF uses case-
insensitive names consisting of letters, digits, and dashes, e.g. HTTP-message

and IPv6address. ABNF includes an angle-bracket notation for prose descrip-
tions, e.g. <host, see [RFC3986], Section 3.2.2>, usable as last resort in
the definiens of a nonterminal.

While BNF allows arbitrary terminals, ABNF uses only natural numbers as
terminals, and denotes them via: (i) binary, decimal, or hexadecimal sequences,
e.g. %b1.11.1010, %d1.3.10, and %x.1.3.a all denote the string ‘1 3 10’; (ii)
binary, decimal, or hexadecimal ranges, e.g. %x30-39 denotes any string ‘n’ with
48 ≤ n ≤ 57 (an ASCII digit); (iii) case-sensitive ASCII strings, e.g. %s"Ab"
denotes the string ‘65 98’; and (iv) case-insensitive ASCII strings, e.g. %i"ab",
or just "ab", denotes any string among ‘65 66’, ‘65 98’, ‘97 66’, and ‘97 98’.
ABNF terminals in suitable sets represent ASCII or Unicode characters.

ABNF allows repetition prefixes n *m, where n and m are natural numbers
in decimal notation; if absent, n defaults to 0, and m defaults to infinity. For
example, 1*4HEXDIG denotes one to four HEXDIGs, *3DIGIT denotes up to three
DIGITs, and 1*OCTET denotes one or more OCTETs. A single n prefix abbreviates
n *n, e.g. 3DIGIT denotes three DIGITs.

Instead of BNF’s |, ABNF uses / to separate alternatives. Repetition pre-
fixes have precedence over juxtapositions, which have precedence over /. Round
brackets group things and override the aforementioned precedence rules, e.g.
*(WSP / CRLF WSP) denotes strings obtained by repeating, zero or more times,
either (i) a WSP or (ii) a CRLF followed by a WSP. Square brackets also group things
but make them optional, e.g. [":" port] is equivalent to 0*1(":" port).

Instead of BNF’s ::=, ABNF uses = to define nonterminals, and =/ to incre-
mentally add alternatives to previously defined nonterminals. For example, the
rule BIT = "0" / "1" is equivalent to BIT = "0" followed by BIT =/ "1".

The syntax of ABNF itself is formally specified in ABNF [9, Section 4], after
the syntax and semantics of ABNF are informally specified in natural language
[9, Sections 1–3]. The syntax rules of ABNF prescribe the ASCII codes allowed
for white space (spaces and horizontal tabs), line endings (carriage returns fol-
lowed by line feeds), and comments (semicolons to line endings).

2.2 ACL2

ACL2 is a general-purpose interactive theorem prover based on an untyped first-
order logic of total functions that is an extension of a purely functional subset
of Common Lisp [15]. Predicates are functions and formulas are terms; they are
false when their value is nil, and true when their value is t or anything non-nil.



ABNF Formalization and Verified Parser 3

(defun fact (n)
(if (zp n) 1 (* n (fact (- n 1)))))

(defthm above
(implies (natp n) (>= (fact n) n)))

(defchoose below (b) (n)
(and (natp b) (< b (fact n))))

(defun-sk between (n)
(exists (m)

(and (natp m) (< (below n) m) (< m (fact n)))))

Fig. 1. Some simple examples of ACL2 functions and theorems

The ACL2 syntax is consistent with Lisp. A function application is a paren-
thesized list consisting of the function’s name followed by the arguments, e.g.
x + 2× f(y) is written (+ x (* 2 (f y))). Names of constants start and end
with *, e.g. *limit*. Comments extend from semicolons to line endings (like
ABNF, incidentally).

The user interacts with ACL2 by submitting a sequence of theorems, function
definitions, etc. ACL2 attempts to prove theorems automatically, via algorithms
similar to NQTHM [7], most notably simplification and induction. The user
guides these proof attempts mainly by (i) proving lemmas for use by specific
proof algorithms (e.g. rewrite rules for the simplifier) and (ii) supplying theorem-
specific ‘hints’ (e.g. to case-split on certain conditions).

The factorial function can be defined like fact in Fig. 1, where zp tests
if n is 0 or not a natural number. Thus fact treats arguments that are not
natural numbers as 0. ACL2 functions often handle arguments of the wrong
type by explicitly or implicitly coercing them to the right type—since the logic
is untyped, in ACL2 a ‘type’ is just any subset of the universe of values.

To preserve logical consistency, recursive function definitions must be proved
to terminate via a measure of the arguments that decreases in each recursive
call according to a well-founded relation. For fact, ACL2 automatically finds
a measure and proves that it decreases according to a standard well-founded
relation, but sometimes the user has to supply a measure.

A theorem saying that fact is above its argument can be introduced like
above in Fig. 1, where natp tests if n is a natural number. ACL2 proves this
theorem automatically (if a standard arithmetic library [24, books/arithmetic] is
loaded), finding and using an appropriate induction rule—the one derived from
the recursive definition of fact, in this case.

Besides the discouraged ability to introduce arbitrary axioms, ACL2 provides
logical-consistency-preserving mechanisms to axiomatize new functions, such as
indefinite description functions. A function constrained to be strictly below fact

can be introduced like below in Fig. 1, where b is the variable bound by the
indefinite description. This introduces the logically conservative axiom that, for
every n, (below n) is a natural number less than (fact n), if any exists—
otherwise, (below n) is unconstrained.

ACL2’s Lisp-like macro mechanism provides the ability to extend the lan-
guage with new constructs defined in terms of existing constructs. For instance,
despite the lack of built-in quantification in the logic, functions with top-level
quantifiers can be introduced. The existence of a value strictly between fact and
below can be expressed by a predicate like between in Fig. 1, where defun-sk



4 A. Coglio

rulelist = 1*( rule / (*c-wsp c-nl) )
rule = rulename defined-as elements c-nl
defined-as = *c-wsp ("=" / "=/") *c-wsp
elements = alternation *c-wsp
alternation = concatenation *(*c-wsp "/" *c-wsp concatenation)
concatenation = repetition *(1*c-wsp repetition)
repetition = [repeat] element
element = rulename / group / option / char-val / num-val / prose-val
group = "(" *c-wsp alternation *c-wsp ")"
option = "[" *c-wsp alternation *c-wsp "]"
num-val = "%" (bin-val / dec-val / hex-val)
bin-val = "b" 1*BIT [ 1*("." 1*BIT) / ("-" 1*BIT) ]
dec-val = "d" 1*DIGIT [ 1*("." 1*DIGIT) / ("-" 1*DIGIT) ]
hex-val = "x" 1*HEXDIG [ 1*("." 1*HEXDIG) / ("-" 1*HEXDIG) ]
c-wsp = WSP / (c-nl WSP)
c-nl = comment / CRLF
CRLF = CR LF ; carriage return and line feed
WSP = SP / HTAB ; space or horizontal tab

Fig. 2. Some rules of the ABNF grammar of ABNF

is a macro defined in terms of defchoose and defun, following a well-known
construction [2].

3 ABNF Formalization

3.1 Abstract Syntax

The formalization starts by defining an abstract syntax of ABNF, based on
the ABNF rules that define the concrete syntax of ABNF.1 To ease validation
by inspection, this abstract syntax closely follows the structure of the concrete
syntax (as exemplified below) and abstracts away only essentially lexical details
(e.g. white space, comments, and defaults of repetition prefixes). ACL2’s FTY
macro library for introducing structured recursive types [23] is used to define
the abstract syntactic entities of ABNF—11 types in total.

For example, the concrete syntax of numeric terminal notations such as
%d1.3.10 and %x30-39 is defined in ABNF by num-val in Fig. 2, where the
definitions of BIT, DIGIT, and HEXDIG are not shown but should be obvious from
the names. In ACL2, the corresponding abstract syntax is formalized by num-val

in Fig. 3, where: fty::deftagsum introduces a tagged sum type (disjoint union);
num-val is the name of the type; :direct tags direct notations such as %d1.3.10
whose only component get is a list of natural numbers (type nat-list, whose
recognizer is nat-listp) such as (1 3 10); and :range tags range notations
such as %x30-39 whose components min and max are natural numbers (type
nat, whose recognizer is natp) such as 48 and 57. This type definition intro-
duces: a recognizer num-val-p for the type; constructors num-val-direct and
num-val-range; destructors num-val-direct->get, num-val-range->min, and
num-val-range->max; and several theorems about these functions. Compared
to the concrete syntax rule num-val in Fig. 2, the abstract syntax type num-val

1 The meta circularity of the definition of the concrete syntax of ABNF in ABNF is
broken by the human in the loop, who defines an abstract syntax of ABNF in ACL2.



ABNF Formalization and Verified Parser 5

(fty::deftagsum num-val
(:direct ((get nat-list)))
(:range ((min nat) (max nat))))

(fty::defprod rule
((name rulename)
(incremental bool)
(definiens alternation)))

(fty::deflist rulelist
:elt-type rule)

(fty::deftypes alt/conc/rep/elem
(fty::deflist alternation :elt-type concatenation)
(fty::deflist concatenation :elt-type repetition)
(fty::defprod repetition

((range repeat-range) (element element)))
(fty::deftagsum element

(:rulename ((get rulename)))
(:group ((get alternation)))
(:option ((get alternation)))
(:char-val ((get char-val)))
(:num-val ((get num-val)))
(:prose-val ((get prose-val)))))

Fig. 3. Some excerpts of the abstract syntax of ABNF formalized in ACL2

in Fig. 3 abstracts the binary, decimal, or hexadecimal notations to their natural
number values.

As another example, the concrete syntax of rule definientia is defined in
ABNF by alternation and mutually recursive companions in Fig. 2. In ACL2,
the corresponding abstract syntax is formalized by alternation and mutually
recursive companions in Fig. 3, where: fty::deftypes introduces mutually re-
cursive types; fty::deflist introduces a type of lists over the element type that
appears after :elt-type; fty::defprod introduces a product type similar to a
fty::deftagsum summand; repeat-range is a type for repetition prefixes such
as 1* or 3*6; rulename is a type for rule names; char-val is a type for string
terminal notations such as %s"Ab"; and prose-val is a type for prose notations
such as <host, see [RFC3986], Section 3.2.2>. These type definitions in-
troduce recognizers, constructors, destructors, and theorems analogous to the
ones for num-val above. Compared to the concrete syntax rules alternation

and companions in Fig. 2, the abstract syntax types alternation and compan-
ions in Fig. 3 abstract away comments, white space, and line endings.

As a third example, the concrete syntax of grammars (i.e. lists of rules) is
defined in ABNF by rulelist in Fig. 2. In ACL2, the corresponding abstract
syntax is formalized by rulelist in Fig. 3, where the incremental component
of rule is a boolean that says whether the rule is incremental (=/) or not (=).
Compared to the concrete syntax rules rulelist and rule, the abstract syn-
tax types rulelist and rule abstract away comments, white space, and line
endings.

The syntactic structure of ABNF grammars is more complex than the syn-
tactic structure of plain context-free grammars. ABNF rule definientia are ex-
pressions built out of various terminal notations (direct and range numeric no-
tations, etc.) and operators (alternation, concatenation, repetition, etc.), while
plain context-free rule definientia are sequences of symbols.

3.2 Semantics

An ABNF grammar describes how a sequence of natural numbers (terminals)
can be organized in tree structures according to the grammar’s rules. Thus, the
semantics of the abstract syntactic entities is formalized via matching relations
with trees. The notion of language generated by a grammar is derived from that.



6 A. Coglio

(fty::deftypes trees
(fty::deftagsum tree

(:leafterm ((get nat-list)))
(:leafrule ((get rulename)))
(:nonleaf ((rulename? maybe-rulename) (branches tree-list-list))))

(fty::deflist tree-list :elt-type tree)
(fty::deflist tree-list-list :elt-type tree-list))

(defun tree-match-num-val-p (tree num-val)
(and (tree-case tree :leafterm)

(let ((nats (tree-leafterm->get tree)))
(num-val-case num-val

:direct (equal nats num-val.get)
:range (and (equal (len nats) 1)

(<= num-val.min (car nats))
(<= (car nats) num-val.max))))))

(mutual-recursion
(defun tree-list-list-match-alternation-p (treess alt rules) ...)
(defun tree-list-list-match-concatenation-p (treess conc rules) ...)
(defun tree-list-match-repetition-p (trees rep rules) ...)
(defun tree-list-match-element-p (trees elem rules) ...)
(defun tree-match-element-p (tree elem rules)

(element-case elem
:rulename (tree-case tree

:leafterm nil
:leafrule (equal tree.get elem.get)
:nonleaf (and (equal tree.rulename? elem.get)

(let ((alt (lookup-rulename elem.get rules)))
(tree-list-list-match-alternation-p
tree.branches alt rules))))

:group ...
:option ...
:char-val ...
:num-val (tree-match-num-val-p tree elem.get)
:prose-val t)))

(defun parse-treep (tree string rulename rules)
(and (treep tree)

(tree-match-element-p tree (element-rulename rulename) rules)
(equal (tree->string tree) string)))

(defun-sk languagep (nats rulenames rules)
(exists (rulename tree) (and (nat-listp nats)

(in rulename rulenames)
(parse-treep tree nats rulename rules))))

Fig. 4. Some excerpts of the semantics of ABNF formalized in ACL2

Since a single terminal notation like %d1.3.10 or %s"Ab" denotes multiple
natural numbers in sequence, it is convenient to use lists (i.e. strings) of natural
numbers, instead of individual natural numbers, to label leaves of trees. A rule
name (nonterminal) can label the root of a (sub)tree, with branches for one of
the concatenations of the alternation that defines the rule name. Since a con-
catenation is a sequence of repetitions, and each repetition may denote multiple
instances of its element, the branches are organized into a list of lists: the outer
list matches the list of repetitions that form the concatenation, and each inner
list matches the element instances of the corresponding repetition; this orga-
nization facilitates the formulation of the matching relations (see below). Rule
names can also label leaves, to represent the tree structure of strings that in-
clude nonterminals. Round-bracketed groups and square-bracketed options are
like anonymous rules: roots of (sub)trees that match groups and options are
not labeled by rule names, but have lists of lists of branches for concatenations



ABNF Formalization and Verified Parser 7

tree:
x

y y y ‘1 3 10’

‘65 98’ () ()

z z ‘50’

x () x ()

‘97 66’

rules:

x = *y %d1.3.10

y = %s"Ab" / (2z / %x30-39)

z = x ["ab"]

string:

‘65 98 x 97 66 x 50 1 3 10’

Fig. 5. An example of a tree for a string, given some rules

(defchoose parse-http (result) (string)
(if (string-parsablep string *http-message* *http-grammar*)

(and (parse-treep result string *http-message* *http-grammar*)
(disambiguatep result))

(equal result *error*)))

Fig. 6. A sketch of a declarative specification of an HTTP parser

from the alternations inside the brackets, in the same way as named rules; ad-
ditionally, a square-bracketed option is allowed to have an empty list of lists of
branches, to represent the absence of the option.

Formally, (lists of (lists of)) trees are recursively defined by tree and mutu-
ally recursive companions in Fig. 4, where maybe-rulename is a type consisting
of rule names and nil—the latter is used for roots not labeled by rule names. A
function tree->string (whose definition is not shown here) collects the natural
numbers and rule names at the leaves of a tree, from left to right, into a string
(i.e. list).

Trees can be visualized as in Fig. 5. Leaves are labeled by lists of natural
numbers or rule names. Roots of (sub)trees are labeled by rule names or, for
groups and options, by () (which is another way to write nil in ACL2). Lines
with joints represent lists of lists of branches.

A tree matches a direct numeric terminal notation iff it is a leaf labeled by the
same list of natural numbers; a tree matches a range numeric terminal notation
iff it is a leaf labeled by a list of one natural number in the range. This is formal-
ized by tree-match-num-val-p in Fig. 4, where: (tree-case tree :leafterm)

tests if tree is tagged by :leafterm; (num-val-case num-val ...) performs
a case analysis on the tag of num-val (Fig. 3) that binds the variables with dots
in their names to the corresponding components of the target variable num-val

(e.g. num-val.get is bound to (num-val-direct->get num-val)); len returns
the length of a list; and car returns the first value of a list.

Since an element (e.g. a numeric terminal notation) is matched by a tree, a
repetition is matched by a list of trees: the length of the list must be within the
repetition prefix’s range, and each tree of the list must match the repetition’s



8 A. Coglio

element. Since a concatenation is a list of repetitions, a concatenation is matched
by a list of lists of trees: the length of the outer list must equal the length of
the concatenation, and each inner list must match the corresponding repetition.
Since an alternation denotes one of its concatenations at a time, an alternation
is matched by a list of lists of trees, which must match one of the alternation’s
concatenations. A rule name is matched by either a leaf tree labeled by the
rule name, or a non-leaf tree whose root is labeled by the rule name and whose
branches match the alternation that defines the rule name. A group is matched
by a non-leaf tree whose root is labeled by () and whose branches match the
alternation inside the group; an option is matched by either a tree in the same
way as a group, or by a non-leaf tree whose root is labeled by () and with an
empty list of lists of trees as branches.

The assertions in the previous paragraph are formalized by tree-list-list-

match-alternation-p and mutually recursive companions in Fig. 4, where:
mutual-recursion introduces mutually recursive defuns; (element-case elem

...) and (tree-case tree ...) perform case analyses on the tags of elem

(Fig. 3) and tree (Fig. 4), analogously to num-val-case as explained above;
and lookup-rulename collects, from the rules of a grammar, all the alternatives
that define a rule name. The termination of these mutually recursive functions
is proved via a lexicographic measure consisting of the size of the trees followed
by the size of the abstract syntactic entities.

A prose notation is matched by any tree, as far as the ABNF semantics
alone is concerned. Predicates on trees, external to ABNF grammars, can be
used to define the meaning of specific prose notations, and conjoined with the
tree matching predicates to specify parsing requirements.2 Some grammars use
prose notations to refer to rules from other grammars, e.g. the HTTP grammar
uses prose notations to refer to rules from the URI grammar (an example is
in Sect. 2.1): the grammar composition operations briefly mentioned in Sect. 1
replace these prose notations with the referenced rules, resulting in a combined
grammar without prose notations.

Given the rules of a grammar and a rule name, a parse tree for a string
is a tree that matches the rule name and that has the string at the leaves, as
formalized by parse-treep in Fig. 4. Given the rules of a grammar and a set
of rule names, a string of the language generated by the rules starting from the
rule names is a list of natural numbers at the leaves of some parse tree whose
root is one of the rule names, as formalized by languagep in Fig. 4, where in

tests set membership; since ABNF grammars do not have an explicit notion of
start nonterminal, the start nonterminals of interest are specified by the second
argument of languagep.

The parse-treep predicate can be used to write declarative specifications of
correct parsing of ABNF-specified languages. For instance, a (non-executable)
HTTP parser can be specified by something like parse-http in Fig. 6, where:
*http-grammar* is a constant of type rulelist (Fig. 3) representing the rules of

2 Future work includes exploring mechanisms to “plug” such external predicates into
the ABNF semantics.



ABNF Formalization and Verified Parser 9

(def-rule-const *group*
(/_ "(" (*_ *c-wsp*) *alternation* (*_ *c-wsp*) ")"))

(def-rule-const *num-val*
(/_ "%" (!_ (/_ *bin-val*) (/_ *dec-val*) (/_ *hex-val*))))

Fig. 7. Some excerpts of the concrete syntax of ABNF formalized in ACL2

the ABNF grammar of HTTP; *http-message* is a constant of type rulename

(Fig. 3) representing the top-level rule name HTTP-message; string-parsablep
holds iff there exists a parse tree for the string; the predicate disambiguatep

states disambiguating restrictions (since the grammar of HTTP is ambiguous);
and *error* is a constant representing an error, distinct from trees. The function
parse-http returns concrete syntax trees, because grammars do not specify
abstract syntax; a practical HTTP parser can be specified as the composition of
parse-http followed by a suitable HTTP syntax abstraction function (analogous
to the ABNF syntax abstraction functions described in Sect. 3.3).

The semantics of ABNF grammars is more complex than the semantics of
plain context-free grammars. ABNF parse trees have branches organized as lists
of lists and have roots of non-leaf trees possibly labeled by (), while parse trees
of plain context-free grammars have branches organized as lists and have roots
of non-leaf trees always labeled by nonterminals. Accordingly, the ABNF tree
matching relations are more complex than the tree matching relations of plain
context-free grammars.

3.3 Concrete Syntax

The concrete syntax of ABNF is formalized in ACL2 using the rules of the ABNF
grammar of ABNF, but “written in abstract syntax” because the concrete syntax
is not available before it is formalized. This safely captures the meta circularity.

Since the FTY constructors of the abstract syntax are verbose, some specially
crafted and named functions and macros are defined, and used to write abstract
syntactic entities in a way that looks more like concrete syntax, easing not only
their writing, but also their validation by inspection. For example, the rules
group and num-val (Fig. 2) are written in abstract syntax as shown in Fig. 7.

After transcribing the 40 rules of the ABNF grammar of ABNF to this form,
a constant *abnf-grammar* consisting of their list is defined. Since grammars,
i.e. values of type rulelist (Fig. 3), are endowed with semantics (Sect. 3.2),
this constant provides a formalization of the concrete syntax of ABNF in ACL2.

The link between the concrete and abstract syntax of ABNF is formalized
by 51 executable ACL2 functions that map parse trees to their correspond-
ing abstract syntactic entities: these are abstraction functions, which distill the
abstract syntactic information from the concrete syntactic information. For ex-
ample, a function abstract-num-val (whose definition is not shown here) maps
a tree that matches the rule name num-val (Fig. 2) to a value of type num-val

(Fig. 3). This function calls other abstraction functions on its subtrees, e.g. a
function abstract-*bit (whose definition is not shown here) that maps a list



10 A. Coglio

rulename defined-as alternation c-nl WSP c-nl

()

c-wsp

elements

rule

()

rulelist

c-wsp

()

elements

rule

()()

rulelist

string:

upper tree:

lower tree:

Fig. 8. An example showing the ambiguity of the ABNF grammar of ABNF

of trees that matches *BIT to the big endian value of their bits. The top-level
abstraction function abstract-rulelist (whose definition is not shown here)
maps a tree that matches the rule name rulelist (Fig. 2) to the corresponding
value of type rulelist (Fig. 3)—a grammar.

4 ABNF Grammar Parser

When specifying correct parsing of an ABNF-specified language as sketched in
Fig. 6, a constant like *http-grammar* can be built by manually transcribing
the grammar, as done for *abnf-grammar* (Sect. 3.3). A better alternative is
to perform this transcription automatically, by running (i) the grammar parser
described in the rest of this section, which produces a parse tree that matches
rulelist, followed by (ii) abstract-rulelist (Sect. 3.3) on the resulting parse
tree.

Since the grammar parser is verified as described below, and this auto-
matic transcription process operates on the actual grammar text (e.g. copied
and pasted from an Internet standard document), the resulting formal parsing
specification is faithful to the grammar.

Running this process on the ABNF grammar of ABNF produces the same
value as the manually built *abnf-grammar*. This provides a validation.

4.1 Implementation

The ABNF grammar of ABNF is ambiguous, as shown by the two different parse
trees for the same string (of nonterminals, for brevity) in Fig. 8: the first c-nl



ABNF Formalization and Verified Parser 11

can either end a rule (lower tree) or form, with the WSP, a c-wsp under elements
(upper tree). The ambiguity only affects where certain comments, white space,
and line endings go in the parse trees; it does not affect the abstract syntax,
and thus the semantics, of ABNF. The parser resolves the ambiguity by always
parsing as many consecutive c-wsps as possible, as in the upper tree in Fig. 8.3

Aside from this ambiguity, the ABNF grammar of ABNF is mostly LL(1),
with some LL(2) and LL(∗) parts [1,21]. The parser is implemented as a recursive
descent with backtracking. Backtracking is expected to be limited in reasonable
grammars. Indeed, the parser runs very quickly on all the example grammars
included in the development—fractions of a second, including file reading, which
is adequate for the expected use of the parser outlined above.

The parser consists of 85 executable ACL2 functions. There is a parsing func-
tion for each rule, and parsing functions for certain groups, options, repetitions,
and terminal notations. ACL2’s Seq macro library for stream processing [25, seq]
is used to define these functions in a more readable way. Each function takes a
list of natural numbers to parse as input, and, consistently with Seq, returns (i)
an indication of success (nil, i.e. no error) or failure (an error message, which
is never nil), (ii) a (list of) parse tree(s) if successful, and (iii) the remaining
natural numbers in the input.

For example, the parsing function for CRLF (Fig. 2) is parse-crlf in Fig. 9,
where: first parse-cr parses a carriage return, yielding a CR parse tree that is
assigned to tree-cr; then parse-lf parses a line feed, yielding an LF parse tree
that is assigned to tree-lf; and finally return returns (i) nil (success), (ii) a
CRLF parse tree with the two subtrees, and (iii) the remaining input after the
carriage return and line feed. If parse-cr or parse-lf fails, parse-crlf fails.
The threading of the input and the propagation of the failures is handled by the
seq macro behind the scenes.

As another example, the parsing function for WSP (Fig. 2) is parse-wsp in
Fig. 9, where: parse-sp attempts to parse a space, returning a WSP parse tree
with a SP subtree if successful; otherwise parse-htab attempts to parse a hori-
zontal tab, returning a WSP parse tree with a HTAB subtree if successful. If both
parse-sp and parse-htab fail, parse-wsp fails. The backtracking is handled by
the seq-backtrack macro behind the scenes.

As a third example, the parsing function for *BIT is parse-*bit in Fig. 9,
which uses parse-bit to parse as many bits as possible, eventually returning
the corresponding list of BIT parse trees; cons adds an element to the front of a
list. The termination of parse-*bit is proved by the decrease of the length of
the input. This function never fails: when no bits can be parsed, the empty list
nil of parse trees is returned.

The parsing functions for alternation and mutually recursive companions
(Fig. 2) are mutually recursive (their definitions are not shown here). Their ter-
mination is proved via a lexicographic measure consisting of the size of the input
followed by a linear ordering of these functions—the length of the input alone is

3 Future work includes exploring the formulation of an unambiguous ABNF grammar
of ABNF that provably defines the same language as the current ambiguous one.



12 A. Coglio

(defun parse-crlf (input)
(seq input

(tree-cr := (parse-cr input))
(tree-lf := (parse-lf input))
(return (tree-nonleaf *crlf* (list (list tree-cr) (list tree-lf))))))

(defun parse-wsp (input)
(seq-backtrack input

((tree := (parse-sp input))
(return (tree-nonleaf *wsp* (list (list tree)))))

((tree := (parse-htab input))
(return (tree-nonleaf *wsp* (list (list tree)))))))

(defun parse-*bit (input)
(seq-backtrack input

((tree := (parse-bit input))
(trees := (parse-*bit input))
(return (cons tree trees)))

((return nil))))

(defun parse-grammar (input)
(b* (((mv error? tree? rest) (parse-rulelist input)))

(cond (error? nil) (rest nil) (t tree?))))

Fig. 9. Some excerpts of the ABNF grammar parser in ACL2

(defthm parse-treep-of-parse-grammar
(implies (and (nat-listp input)

(parse-grammar input))
(parse-treep (parse-grammar input) input *rulelist* *abnf-grammar*)))

(defthm input-decomposition-of-parse-crlf
(implies (and (nat-listp input)

(not (mv-nth 0 (parse-crlf input))))
(equal (append (tree->string (mv-nth 1 (parse-crlf input)))

(mv-nth 2 (parse-crlf input)))
input)))

(defthm tree-match-of-parse-crlf
(implies (and (nat-listp input)

(not (mv-nth 0 (parse-crlf input))))
(tree-match-element-p (mv-nth 1 (parse-crlf input))

(element-rulename *crlf*)
*abnf-grammar*)))

Fig. 10. Some excerpts of the ABNF grammar parser soundness proof in ACL2

insufficient to prove termination, because some (e.g. parse-alternation) call
others (e.g. parse-concatenation) on the same input.

The top-level parsing function is parse-grammar in Fig. 9, where b* binds
the results of parse-rulelist to the three variables in the triple (mv ...). The
function checks that there is no remaining input, returning just the parse tree if
successful (or nil, i.e. no parse tree, if a failure occurs). There is also a wrapper
function parse-grammar-from-file (whose definition is not shown here) that
takes a file name as input and calls parse-grammar on the file’s content.

4.2 Verification

The correctness of the parser consists of:
– Soundness: the parser recognizes only ABNF grammars.
– Completeness: the parser recognizes all ABNF grammars (almost; see below).



ABNF Formalization and Verified Parser 13

(defthm parse-grammar-when-tree-match
(implies (and (treep tree)

(tree-match-element-p tree (element-rulename *rulelist*) *abnf-grammar*)
(tree-terminatedp tree)
(tree-rulelist-restriction-p tree))

(equal (parse-grammar (tree->string tree)) tree)))

(defthm parse-wsp-when-tree-match
(implies (and (treep tree)

(nat-listp rest-input)
(tree-match-element-p tree (element-rulename *wsp*) *abnf-grammar*)
(tree-terminatedp tree))

(equal (parse-wsp (append (tree->string tree) rest-input))
(mv nil tree rest-input))))

(defthm parse-*bit-when-tree-list-match
(implies (and (tree-listp trees)

(nat-listp rest-input)
(tree-list-match-repetition-p trees (*_ *bit*) *abnf-grammar*)
(tree-list-terminatedp trees)
(mv-nth 0 (parse-bit rest-input)))

(equal (parse-*bit (append (tree-list->string trees) rest-input))
(mv nil trees rest-input))))

(defthm fail-sp-when-match-htab
(implies (and (tree-match-element-p tree (element-rulename *htab*) *abnf-grammar*)

(tree-terminatedp tree))
(mv-nth 0 (parse-sp (append (tree->string tree) rest-input)))))

(defthm constraints-from-parse-sp
(implies (not (mv-nth 0 (parse-sp input)))

(equal (car input) 32)))

(defthm constraints-from-tree-match-htab
(implies (and (tree-match-element-p tree (element-rulename *htab*) *abnf-grammar*)

(tree-terminatedp tree))
(equal (car (tree->string tree)) 9)))

(defun-sk pred-alternation (input)
(forall (tree rest-input)

(implies (and (treep tree)
(nat-listp rest-input)
(tree-match-element-p tree (element-rulename *alternation*) *abnf-grammar*)
(tree-terminatedp tree)
... ; 8 parsing failure hypotheses on rest-input
(equal input (append (tree->string tree) rest-input)))

(equal (parse-alternation (append (tree->string tree) rest-input))
(mv nil tree rest-input)))))

(defthm parse-alternation-when-tree-match-lemma
(pred-alternation input))

Fig. 11. Some excerpts of the ABNF grammar parser completeness proof in ACL2

More precisely, the parser not only recognizes ABNF grammars, but also returns
the corresponding parse trees, as elaborated below.

The main soundness theorem is parse-treep-of-parse-grammar in Fig. 10,
where *rulelist* represents the rule name rulelist (Fig. 2). Semi-formally,
the theorem says:

input is a list of natural numbers ∧
(parse-grammar input) 6= nil =⇒
(parse-grammar input) is a parse tree

with rulelist at the root and input at the leaves

That is, if parse-grammar (Fig. 9) succeeds, it returns a parse tree that organizes
the input into the tree structure of a grammar (i.e. a list of rules).



14 A. Coglio

This main soundness theorem is proved via two theorems for each of the
parsing functions that return triples:

– Input decomposition: if the function succeeds, the string at the leaves of the
returned parse tree(s) consists of the natural numbers parsed from the input,
and the function also returns the remaining natural numbers in the input.

– Tree matching: if the function succeeds, the returned parse tree/trees is/are
consistent with the syntactic entity that the function is intended to parse.

For example, the input decomposition theorem of parse-crlf (Fig. 9) is
input-decomposition-of-parse-crlf in Fig. 10, where mv-nth extracts the
components (zero-indexed) of the triple returned by parse-crlf. The theorem
says that if parse-crlf succeeds (i.e. its first result is nil, not an error), joining
the string at the leaves of the returned tree with the returned remaining input
yields the original input.

Each input decomposition theorem is proved by expanding the parsing func-
tion and using the input decomposition theorems of the called parsing func-
tions as rewrite rules. For instance, in input-decomposition-of-parse-crlf

(Fig. 10), expanding parse-crlf turns the (append ...) into one involving
parse-cr and parse-lf, making their input decomposition theorems applica-
ble.

As another example, the tree matching theorem of parse-crlf (Fig. 9) is
tree-match-of-parse-crlf in Fig. 10. The theorem says that if parse-crlf

succeeds (formulated in the same way as in the input decomposition theorem),
the returned parse tree matches CRLF—which parse-crlf is intended to parse.

Each tree matching theorem is proved by expanding the parsing function and
the tree matching predicate, and using the tree matching theorems of the called
functions as rewrite rules. For instance, in the tree-match-of-parse-crlf, ex-
panding parse-crlf and tree-match-element-p turns the conclusion into the
assertion that the subtrees match CR and LF when parse-cr and parse-lf suc-
ceed, making their tree matching theorems applicable.

The input decomposition and tree matching theorems of the recursive parsing
functions (e.g. parse-*bit in Fig. 9) are proved by induction on their recursive
definitions.

The main soundness theorem, parse-treep-of-parse-grammar (Fig. 10),
is proved from the input decomposition and tree matching theorems of parse-

rulelist, and the fact that parse-grammar fails if there is remaining input.

Since the ABNF grammar of ABNF is ambiguous (Fig. 8) but the parser
returns a single parse tree at a time, completeness is not provable. But it is
provable relatively to trees consistent with how the parser resolves the ambi-
guity. A predicate tree-rulelist-restriction-p formalizes these restrictions
on trees: each (*c-wsp c-nl) subtree, except the one (if any) that starts a
rulelist, must not start with WSP.

The main completeness theorem is parse-grammar-when-tree-match in Fig.
11, where tree-terminatedp tests if a tree is terminated, i.e. if the string at its
leaves has only natural numbers and no rule names. Semi-formally, the theorem
says:



ABNF Formalization and Verified Parser 15

tree is a tree ∧
tree matches rulelist ∧
tree has no rule names at the leaves ∧
tree satisfies the disambiguating restrictions =⇒
(parse-grammar (tree->string tree)) = tree

That is, if a terminated tree matches a rulelist (i.e. it is a concrete syntactic
representation of a grammar) and is consistent with how the parser resolves the
ambiguity, parse-grammar succeeds on the string at the leaves of the tree and
returns the tree.

This main completeness theorem is proved via an auxiliary completeness
theorem for each of the parsing functions that return triples. The formulation
of these auxiliary theorems is analogous to the main one, but with additional
complexities: in the conclusions, the parsing functions are applied to the string
at the leaves of the tree(s) joined with some remaining input; this makes these
theorems usable as rewrite rules, and enables the addition of certain critical
hypotheses to these theorems.

For example, the completeness theorem of parse-wsp (Fig. 9) is parse-wsp-
when-tree-match in Fig. 11. As another example, the completeness theorem of
parse-*bit (Fig. 9) is parse-*bit-when-tree-list-match in Fig. 11. The hy-
pothesis that parse-bit fails on rest-input is critical: without it, parse-*bit
might parse another bit from rest-input, and return a longer list of trees than
trees.

Each auxiliary completeness theorem is proved by expanding the parsing
function and the tree matching predicate, using the completeness theorems of
the called functions as rewrite rules, and also using, as needed, certain disam-
biguation theorems.

The need and nature of these disambiguation theorems, in simple form, are
illustrated by considering the proof of the completeness theorem of parse-wsp.
The hypothesis that tree matches WSP expands to two cases:

1. The subtree matches the SP alternative of WSP. In this case, the completeness
theorem of parse-sp applies, parse-sp succeeds returning the subtree, and
parse-wsp succeeds returning tree.

2. The subtree matches the HTAB alternative of WSP. For the completeness
theorem of parse-htab to apply, parse-sp must be shown to fail so that
parse-wsp reduces to parse-htab and the proof proceeds as in the SP case.4

The theorem saying that parse-sp fails on the string at the leaves of a termi-
nated tree matching HTAB is fail-sp-when-match-htab in Fig. 11. This theorem
is proved via two theorems saying that parse-sp and HTAB induce incompati-
ble constraints on the same value at the start of the input: the two theorems
are constraints-from-parse-sp and constraints-from-tree-match-htab in
Fig. 11. The incompatible constraints are that parse-sp requires the ASCII code
32, while HTAB requires the ASCII code 9.

4 Even though the roles of SP and HTAB are “symmetric” in the rule WSP in Fig. 2, the
function parse-wsp in Fig. 9 “asymmetrically” tries to parse SP before HTAB.



16 A. Coglio

There are 26 parsing constraint theorems similar to the one for parse-sp,
and 49 tree matching constraint theorems similar to the one for HTAB. There are
87 disambiguation theorems similar to fail-sp-when-match-htab (Fig. 11):
they say that certain parsing functions fail when trees match certain syntactic
entities, effectively showing that the parser can disambiguate all the alternatives
in the ABNF grammar of ABNF, including deciding when to stop parsing un-
bounded repetitions. The disambiguation theorems are used to prove not only
some completeness theorems, but also other disambiguation theorems. Some dis-
ambiguation theorems critically include parsing failure hypotheses similarly to
the completeness theorem of parse-*bit (Fig. 11). Many disambiguation theo-
rems show incompatible constraints just on the first one or two natural numbers
in the input, corresponding to LL(1) and LL(2) parts of the grammar. But for
LL(∗) parts of the grammar, the disambiguation theorems show incompatible
constraints on natural numbers that follow unbounded prefixes of the input; to
“go past” these prefixes in the proofs of these disambiguation theorems, certain
completeness theorems are used in turn.

Since the auxiliary completeness theorems call the parsing functions not on
variables but on (append ...) terms, induction on the recursive parsing func-
tions is not readily applicable [7, Chapt. 15]. For the singly recursive functions
like parse-*bit, induction on the list of trees is used. For the mutually re-
cursive functions like parse-alternation, an analogous induction on the (lists
of (lists of)) trees seems unwieldy due to the number (10) of mutually recur-
sive parsing functions. Instead, the desired completeness assertions are pack-
aged into predicates like pred-alternation in Fig. 11, where the tree and re-
maining input are universally quantified and a new variable input is equated
to the argument of the parsing function. Given these predicates, theorems like
parse-alternation-when-tree-match-lemma in Fig. 11 are proved by induc-
tion on the recursive parsing functions (now applicable to the variable input),
from which the desired completeness theorems readily follow.

The main completeness theorem, parse-grammar-when-tree-match (Fig.
11), is proved from the auxiliary completeness theorem of parse-rulelist and
the fact that the absence of remaining input fulfills the parsing failure hypotheses
on the remaining input.

All the theorems and proofs overviewed in this subsection are discussed in
much greater detail in the documentation of the development [25, abnf]. Even the
short overview above should convey that the completeness proof is considerably
more laborious than the soundness proof, perhaps because the completeness
proof must show that the parser can reconstruct any parse tree from its string
at the leaves, while the soundness proof must show that the parser can just
construct one appropriate parse tree when it succeeds.

5 Related Work

The author is not aware of other formalizations of the ABNF notation. There
are formalizations of regular expressions [10], plain context-free grammars [4],



ABNF Formalization and Verified Parser 17

and parsing expression grammars [16]. As explained at the end of Sect. 3.1 and
Sect. 3.2, the syntax and semantics of ABNF are more complex than those of
plain context-free grammars (and of regular expressions). The syntax of pars-
ing expression grammars has some similarities with ABNF, but their semantics
is operational, in terms of parsing steps, in contrast with ABNF’s tree match-
ing semantics. The referenced works formalize abstract syntax of the grammar
notations, but not concrete syntax; in contrast, the work described in this pa-
per formalizes both abstract and concrete syntax of ABNF, using the former
to define the latter as faithfully to the meta circularity [9,18] as allowed by the
theorem prover’s define-before-use constraints, and validating the definition via
the verified ABNF grammar parser as mentioned just before Sect. 4.1.

The author is not aware of other verified parsers of ABNF grammars. There
are verified parsers of other languages [27,17]. Due to ABNF’s role in Internet
syntax specifications, a verified parser of ABNF grammars has a practical sig-
nificance. There are verified generators of parsers, generators of verified parsers,
verified parser interpreters, and verified parser validators [20,5,16,13,22,12]. Since
they are based on different grammar notations from ABNF, using these tools for
the verified parsing of ABNF grammars would require a trusted translation from
the ABNF grammar of ABNF to the tools’ grammar notations; in contrast, the
verification of the parser described in this paper is based directly on the formal-
ized ABNF notation. APG [26] is an ABNF parser generator, but it does not
include or generate formal proofs.

Acknowledgements

This work was supported by DARPA under Contract No. FA8750-15-C-0007.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Pearson, 2nd edn. (2007)

2. Avigad, J., Zach, R.: The epsilon calculus. In: Zalta, E.N. (ed.) The Stan-
ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
summer 2016 edn. (2016), https://plato.stanford.edu/archives/sum2016/entries/
epsilon-calculus/

3. Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Perlis, A.J.,
Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaarden,
A., Woodger, M.: Report on the algorithmic language ALGOL 60. Communica-
tions of the ACM 3(5), 299–314 (May 1960)

4. Barthwal, A.: A formalisation of the theory of context-free languages in higher-
order logic. Ph.D. thesis, The Australian National University (2010)

5. Barthwal, A., Norrish, M.: Verified, executable parsing. In: Proc. 18th European
Symposium on Programming (ESOP). pp. 160–174 (2009)

6. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI):
Generic syntax. Request for Comments (RFC) 3986 (Jan 2005)

7. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press (1979)

https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/
https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/


18 A. Coglio

8. Bray, T.: The JavaScript Object Notation (JSON) data interchange format. Re-
quest for Comments (RFC) 7159 (Mar 2014)

9. Crocker, D., Overell, P.: Augmented BNF for syntax specifications: ABNF. Request
for Comments (RFC) 5234 (Jan 2008)

10. Doczkal, C., Kaiser, J.O., Smolka, G.: A constructive theory of regular languages
in Coq. In: Proc. 3rd International Conference on Certified Programs and Proofs
(CPP). pp. 82–97. No. 8307 in Lecture Notes in Computer Science (2013)

11. Fielding, R., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1): Message syn-
tax and routing. Request for Comments (RFC) 7230 (Jun 2014)

12. Gross, J.S.: An Extensible Framework for Synthesizing Efficient, Verified Parsers.
Master’s thesis, Massachusetts Institute of Technology (2015)

13. Jourdan, J.H., Pottier, F., Leroy, X.: Validating LR(1) parsers. In: Proc. 21st
European Symposium on Programming (ESOP). pp. 397–416. No. 7211 in Lecture
Notes in Computer Science (2012)

14. Kaufmann, M., Moore, J.S.: The ACL2 theorem prover: Web page, http://www.
cs.utexas.edu/users/moore/acl2

15. Kaufmann, M., Moore, J.S.: A precise description of the ACL2 logic. Tech. rep.,
Department of Computer Sciences, University of Texas at Austin (1998)

16. Koprowski, A., Binsztok, H.: TRX: A formally verified parser interpreter. Logical
Methods in Computer Science 7(2), 1–26 (2011)

17. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: A verified imple-
mentation of ML. In: Proc. 41st ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL). pp. 179–191 (2014)

18. Kyzivat, P.: Case-sensitive string support in ABNF. Request for Comments (RFC)
7405 (Dec 2014)

19. Linhart, C., Klein, A., Heled, R., Orrin, S.: HTTP request smuggling. White paper,
Watchfire (2005)

20. Nipkow, T.: Verified lexical analysis. In: Proc. 11th International Conference on
Theorem Proving in Higher-Order Logics (TPHOL). pp. 1–15 (1998)

21. Parr, T., Fisher, K.: LL(*): The foundation of the ANTLR parser generator. In:
Proc. 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). pp. 425–436 (2011)

22. Ridge, T.: Simple, functional, sound and complete combinator parsing for all
context-free grammars, using an oracle. In: Proc. 7th International Conference
on Software Language Engineering (SLE). pp. 261–281. No. 8706 in Lecture Notes
in Computer Science (2014)

23. Swords, S., Davis, J.: Fix your types. In: Proc. 13th International Workshop on
the ACL2 Theorem Prover and Its Applications (2015)

24. The ACL2 Community: The ACL2 theorem prover and community books: Source
code, http://github.com/acl2/acl2

25. The ACL2 Community: The ACL2 theorem prover and community books: User
manual, http://www.cs.utexas.edu/∼moore/acl2/manuals/current/manual

26. Thomas, L.D.: APG: ABNF Parser Generator, http://www.coasttocoastresearch.
com

27. Wisnesky, R., Malecha, G., Morrisett, G.: Certified web services in Ynot. In: Proc.
5th International Workshop on Automated Specification and Verification of Web
Systems (WWV). pp. 5–19 (2009)

http://www.cs.utexas.edu/users/moore/acl2
http://www.cs.utexas.edu/users/moore/acl2
http://github.com/acl2/acl2
http://www.cs.utexas.edu/~moore/acl2/manuals/current/manual
http://www.coasttocoastresearch.com
http://www.coasttocoastresearch.com

	A Formalization of the ABNF Notation  and a Verified Parser of ABNF Grammars

